Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.426
Filtrar
1.
Methods Mol Biol ; 2855: 505-519, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39354324

RESUMO

Cell cultures are widely used in studies to gain mechanistic insights of metabolic processes. The foundation of these studies lies on the quantification of intracellular and extracellular metabolites, and nuclear magnetic resonance (NMR) is one of the key analytical platforms used to this aim. Among the factors influencing the quality of the produced data are the sampling procedures as well as the acquisition and processing of spectroscopic data. Here we provide our workflow for obtaining quantitative metabolic data from adherent mammalian cells using NMR spectroscopy. The described protocol is compatible with other analytical methods like LC- or GC-MS-based lipidomics and untargeted metabolomics from the same sample. We also show how the collected extracellular data can be used to extract exchange flux rates, particularly useful for flux analysis studies and metabolic engineering of human-induced pluripotent stem cells.


Assuntos
Metabolismo Energético , Espectroscopia de Ressonância Magnética , Metabolômica , Humanos , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metaboloma , Animais , Lipidômica/métodos
2.
Plant Cell Environ ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360569

RESUMO

The high biosynthetic and energetic demands of floral thermogenesis render thermogenic plants the ideal systems to characterize energy metabolism in plants, but real-time tracking of energy metabolism in plant cells remains challenging. In this study, a new method was developed for tracking the mitochondrial energy metabolism at the single mitochondria level by real-time imaging of mitochondrial superoxide production (i.e., mitoflash). Using this method, we observed the increased mitoflash frequencies in the receptacles of Nelumbo nucifera Gaertn. at the thermogenic stages. This increase, combined with the higher expression of antioxidant response-related genes identified through time-series transcriptomics at the same stages, shows us a new regulatory mechanism for plant redox balance. Furthermore, we found that the upregulation of respiratory metabolism-related genes during the thermogenic stages not only correlates with changes in mitoflash frequency but also underscores the critical roles of these pathways in ensuring adequate substrate supply for thermogenesis. Metabolite analysis revealed that sugars are likely one of the substrates for thermogenesis and may be transported over long distances by sugar transporters. Taken together, our findings demonstrate that mitoflash is a reliable tool for tracking energy metabolism in thermogenic plants and contributes to our understanding of the regulatory mechanisms underlying floral thermogenesis.

3.
Stem Cell Res Ther ; 15(1): 354, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380099

RESUMO

Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metabolismo Energético , Animais
4.
Neurobiol Sleep Circadian Rhythms ; 17: 100106, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39387098

RESUMO

Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.

5.
Int J Biol Macromol ; 281(Pt 2): 136199, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366613

RESUMO

Sirtuins (SRTs) are nicotinamide adenine dinucleotide (NAD+) dependent II histone deacetylases (HDACs) that have been understudied in horticultural crops. However, their functions in regulating mitochondrial energy metabolism and influencing fruit development and quality formation remain unclear. In this study, we found that FaSRT2-1 exhibits diverse subcellular localizations. Overexpression of FaSRT2-1 promoted strawberry fruit quality formation (soluble sugars, organic acids, anthocyanins) and accelerated ripening. Conversely, knockout of FaSRT2-1 yielded opposite results. During fruit ripening, ATP content and ATP/ADP ratio gradually increased, and FaSRT2-1 promoted ATP accumulation and decreased before and after the deep red stage, respectively, indicating its role in fruit ripening and senescence. FaSRT2-1 interacted with energy-related proteins (FaRPT4a, FaATPß and FaATPγ) to increase ATP content and the ATP/ADP ratio. Additionally, FaSRT2-1 collaborated with FaGDH2 and FaWDR5B to increase the accumulation of soluble sugars, organic acids and anthocyanins. Meanwhile, FaRPT4a, FaATPγ, FaGDH2 and FaWDR5B were co-localized with FaSRT2-1, while FaATPß was localized in both the cytoplasm and mitochondria. Transient overexpression experiments further highlight the roles of FaRPT4a and FaGDH2/FaWDR5B in modulating ATP accumulation and fruit ripening, respectively. In summary, FaSRT2-1 plays important roles in promoting strawberry fruit ripening, senescence and quality formation by regulating energy metabolism.

6.
BMC Genomics ; 25(1): 946, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379813

RESUMO

BACKGROUND: Hypoxia stress resulted in mortality during the fish aquaculture program, affecting the sustainable development of the aquaculture industry. The Egyptian strain of O. niloticus showed a strong ability to hypoxia. In this study, a Nile tilapia strain that was kept and selected for 45 years by the author's team was used to elucidate the mechanism of the hypoxia response in the liver, including the identification of metabolic pathways and genes, involved in the hypoxia response of this strain. RESULTS: The effects of hypoxia stress were detected at 0-hour, 6-hour, and 72-hour time points (0 h, 6 h, 72 h) on tilapia liver at 1 mg/L dissolved oxygen conditions. The blood triglyceride, blood glucose and cholesterol values exhibited significantly different change trends, but the hemoglobin content showed no significant differences between 0 h, 6 h and 72 h (P > 0.05). The activities of catalase (CAT), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), and acid phosphatase (ACP) in the liver tissue gradually increased at 0 h, 6 h and 72 h (P < 0.05). Histological analyses revealed structural changes in intracellular lipid droplets, nuclear migration and dissolution, and cell vacuolization in liver tissues. Six pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were protein processing in endoplasmic reticulum, steroid biosynthesis, peroxisome, PPAR signaling pathway, glycolysis/gluconeogenesis and Insulin signaling pathway. The expressions of the important differentially expressed genes were verified by qPCR analysis, including erola, LOC100692144, sqle, cratb, pipox, cpt1a2b, hik and acss2l, ehhadh, prkcz, fasn and plaa, which showed the same expressions trends as those of RNA-Seq. CONCLUSIONS: The Nile tilapia strain improves the abilities of hypoxia response through energy metabolism. Antioxidant enzyme measurements in the liver indicate that these five antioxidant enzymes play important roles in protecting the body from hypoxic damage. The histological changes in liver cells indicate that the damage caused by hypoxia stress. The immune-related metabolic pathways and energy metabolism-related pathways were obtained by transcriptome profiling, and these metabolic pathways and the differentially expressed genes selected from these metabolic pathways may be involved in the mechanism of hypoxia tolerance in this strain. These findings provide a better understanding of the hypoxia response mechanism of fish, and represent a useful resource for the genetic breeding of O. niloticus.


Assuntos
Ciclídeos , Hipóxia , Fígado , Animais , Fígado/metabolismo , Fígado/patologia , Ciclídeos/genética , Ciclídeos/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Transcriptoma , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Antioxidantes/metabolismo
7.
Gut ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39366725

RESUMO

OBJECTIVE: Acute intermittent porphyria (AIP) is a rare metabolic disorder caused by haploinsufficiency of hepatic porphobilinogen deaminase (PBGD), the third enzyme of the heme biosynthesis. Individuals with AIP experience neurovisceral attacks closely associated with hepatic overproduction of potentially neurotoxic heme precursors. DESIGN: We replicated AIP in non-human primates (NHPs) through selective knockdown of the hepatic PBGD gene and evaluated the safety and therapeutic efficacy of human PBGD (hPBGD) mRNA rescue. RESULTS: Intrahepatic administration of a recombinant adeno-associated viral vector containing short hairpin RNA against endogenous PBGD mRNA resulted in sustained PBGD activity inhibition in liver tissue for up to 7 months postinjection. The administration of porphyrinogenic drugs to NHPs induced hepatic heme synthesis, elevated urinary porphyrin precursors and reproduced acute attack symptoms in patients with AIP, including pain, motor disturbances and increased brain GABAergic activity. The model also recapitulated functional anomalies associated with AIP, such as reduced brain perfusion and cerebral glucose uptake, disturbances in hepatic TCA cycle, one-carbon metabolism, drug biotransformation, lipidomic profile and abnormal mitochondrial respiratory chain activity. Additionally, repeated systemic administrations of hPBGD mRNA in this AIP NHP model restored hepatic PBGD levels and activity, providing successful protection against acute attacks, metabolic changes in the liver and CNS disturbances. This approach demonstrated better efficacy than the current standards of care for AIP. CONCLUSION: This novel model significantly expands our understanding of AIP at the molecular, biochemical and clinical levels and confirms the safety and translatability of multiple systemic administration of hPBGD mRNA as a potential aetiological AIP treatment.

8.
Mol Neurobiol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406937

RESUMO

Neuropathic pain (NP) is a debilitating disease and is associated with energy metabolism alterations. This study aimed to identify energy metabolism-related differentially expressed genes (EMRDEGs) in NP, construct a diagnostic model, and analyze immune cell infiltration and single-cell gene expression characteristics of NP. GSE89224, GSE123919, and GSE134003 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) analysis and an intersection with highly energy metabolism-related modules in weighted gene co-expression network analysis (WGCNA) was performed in GSE89224. Least absolute shrinkage and selection operator (LASSO), random forest, and logistic regression were used for model genes selection. NP samples were divided into high- and low-risk groups and different disease subtypes based on risk score of LASSO algorithm and consensus clustering analysis, respectively. Immune cell composition was estimated in different risk groups and NP subtypes. Datasets 134,003 were performed for identification of single-cell DEGs and functional enrichment. Cell-cell communications and pseudo-time analysis to reveal the expression profile of NP. A total of 38 EMRDEGs were obtained and are majorly enriched in metabolism about glioma and inflammation. LASSO, random forest, and logistic regression identified 6 model genes, which were Itpr1, Gng8, Socs3, Fscn1, Cckbr, and Camk1. The nomogram, based on six model genes, had a good predictive ability, concordance, and diagnostic value. The comparisons between different risk groups and NP subtypes identified important pathways and different immune cells component. The immune infiltration results majorly associated with inflammation and energy metabolism. Single-cell analysis revealed cell-cell communications and cells differentiation characteristics of NP. In conclusion, our results not only elucidate the involvement of energy metabolism in NP but also provides a robust diagnostic tool with six model genes. These findings might give insight into the pathogenesis of NP and provide effective therapeutic regimens for the treatment of NP.

9.
Front Microbiol ; 15: 1433224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380680

RESUMO

Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like Escherichia coli having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.

10.
Sci Rep ; 14(1): 23828, 2024 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394442

RESUMO

Patients with acute brain injury are vulnerable to secondary deterioration, which may go undetected by traditional monitoring. However, multimodal neuromonitoring of brain tissue oxygen tension (PbtO2) and energy metabolism may be able to detect such episodes. We report a retrospective, observational study of 94 patients with aneurysmal subarachnoid haemorrhage (SAH) or traumatic brain injury (TBI) who underwent multimodal neuromonitoring during admission. We examined the co-occurrence of pathological neuromonitoring values: elevated intracranial pressure (ICP, > 20 mmHg), inadequate cerebral perfusion pressure (CPP, < 60 mmHg), brain hypoxia (PbtO2 < 20 mmHg), and metabolic crisis (lactate/pyruvate ratio > 40 and a glucose level < 0.2 mmol/L in cerebral microdialysate). Mixed effects linear regression demonstrated significant associations between abnormal ICP/CPP, cerebral hypoxia and metabolic crisis. However, brain hypoxia occurred in 40% and 31% of observations in patients with SAH and TBI, respectively, despite normal concurrent values of ICP. Similarly, metabolic crisis was observed in 8% and 16% of measurements for SAH and TBI, respectively, despite a normal ICP. The pattern was identical for CPP. In conclusion, although all neuromonitoring variables are interrelated, brain hypoxia and metabolic crisis are common despite an absence of abnormalities in conventional monitoring. Multimodal neuromonitoring may help identify such episodes and guide individualised treatment.


Assuntos
Lesões Encefálicas Traumáticas , Hipóxia Encefálica , Pressão Intracraniana , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Idoso , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/fisiopatologia , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Monitorização Fisiológica/métodos , Oxigênio/metabolismo
11.
Dokl Biol Sci ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39400897

RESUMO

Activities of key enzymes of energy and carbohydrate metabolism (cytochrome c oxidase (COX), lactate dehydrogenase (LDH), aldolase, glucose 6-phosphate dehydrogenase (G6PDH), and 1-glycerophosphate dehydrogenase (1-GPDH)) were studied in pink salmon Oncorhynchus gorbuscha (Walb.) smolts from the White Sea in a cage experiment simulating the transition from a freshwater to a marine environment. A decrease in COX, G6PDH, and 1-GPDH activities and an increase in LDH and aldolase activities were observed in juveniles with an increase in water salinity. Based on the findings, a redistribution of energy substrates between the reactions of aerobic and anaerobic metabolism towards higher anaerobic ATP synthesis was assumed for pink salmon. This may indicate that adaptive mechanisms rearrange metabolism to provide energy for osmoregulation in pink salmon juveniles when the salinity changes in their habitat.

12.
Meat Sci ; 219: 109682, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39395211

RESUMO

This study aimed to explore the differences in the lipidome and mitochondrial fraction metabolome of Nellore cattle meat in different ranges of ultimate pH (pHu) normal (≤5.79), intermediate (5.80 to 6.19) and high (≥ 6.20) after 3- and 21-d postmortem. Instrumental color, myoglobin redox state, oxygen consumption, and metmyoglobin-reducing activity were measured during storage. A total of 472 lipids and 22 mitochondrial fraction metabolites were identified. Beef with high pHu showed positive regulation of ceramides involved in apoptosis and negative regulation of lipid classes related to membrane permeability and stability. In addition, lower carnitine content was noted in high-pHu beef than in normal-pHu beef. Acylcarnitines, phosphatidylinositol, and IMP showed upregulation in beef with intermediate pHu, indicating changes mainly related to energy, purine and pyruvate metabolism. Aging time impacted on the lipid content and metabolites involved in different metabolic pathways. These results provided new insights into beef's mitochondrial fraction lipid and metabolic profile with different pHu. In addition, beef with intermediate pHu differs from beef with high pHu due to changes in energy metabolism.

13.
Mol Carcinog ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412414

RESUMO

We hypothesized that cell energy metabolic profiles correlate with normal, dysplastic, and tumor cell/tissue statuses and may be indicators of aggressiveness in oral squamous cell carcinoma (OSCC) cells. The energy-related proteins that were differentially expressed in human OSCC fragments (n = 3) and their adjacent epithelial tissue (TAE) were verified using mass spectrometry (MS). Immunohistochemistry for 4-hydroxynonenal (4-HNE) was performed to evaluate the oxidative stress patterns in OSCC (n = 10), epithelial dysplasia (n = 9), and normal epithelial (n = 4) biopsies. The metabolic energy profile of OSCC aggressiveness was investigated in human OSCC cell lines with different levels of epithelial-mesenchymal transition proteins. The genes associated with the proteins found by MS in this study were analyzed using survival analysis (OS), whereas the genes associated with a poorer prognosis were analyzed using context-specific expression, Gene Ontology (GO) and Cancer Hallmarks for function enrichment analysis. The rationale for all experimental approach was to investigate whether the variation in energy metabolism profile accompanies the different phenotypes (from epithelial to mesenchymal) during the epithelial-mesenchymal transition. All OSCC fragments exhibited an increase in glycolysis-related proteins and a decrease in mitochondrial activity compared to the TAE region (p < 0.05), probably due to the downregulation of pyruvate dehydrogenase and antioxidant proteins. Additionally, the OSCC cell lines with a mesenchymal profile (SCC4, SCC9, and SCC25) had a lower mitochondrial mass and membrane potential and generated lower levels of reactive oxygen and nitrogen species than the TAE region. When we analyzed 4-HNE, the reactive species levels were increased in the epithelial regions of OSCC and potentially malignant lesions. A decrease in the levels of 4-HNE/reactive species was observed in the connective tissue underlying the dysplastic regions and the OSCC invasion zone. Based on this scenario, aggressive OSCC is associated with high glycolytic and oxidative metabolism and low mitochondrial and antioxidant activities, which vary according to the differentiation level of the tumor cells and the stage of carcinogenesis.

14.
Psychiatry Res ; 342: 116220, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39369460

RESUMO

Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.

15.
Mar Pollut Bull ; 208: 117024, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332334

RESUMO

Nitrite is a common pollutant in aquaculture systems that poses a significant threat to aquatic animals. Energy metabolism is critical in ensuring survival of animals under environmental stressors. However, regulation of energy metabolism in crustaceans under nitrite stress has not been well understood. Here we investigated energy metabolism regulation during nitrite stress and recovery in different tissues of the swimming crab Portunus trituberculatus, an important aquaculture species in China. Our results revealed that nitrite can cause tissue hypoxia and impair energy homeostasis, and energy balance cannot be restored even after a 96-hour recovery. Following exposure, mobilization of glycogen and lipids exhibited different temporal patterns. In response to energy imbalance, AMPK signaling was activated to counter energy imbalance. However, prolonged nitrite stress impaired AMPK signaling, leading to a further decline in energy supply. The findings improve our understanding for nitrite toxicity in P. trituberculatus, and provide valuable information for aquaculture management.

16.
J Inflamm Res ; 17: 6645-6659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345897

RESUMO

Purpose: Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME. Methods: A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac tissues of the two groups were sequenced and mitochondrial functions were assessed. Results: Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes (DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was much higher in CME mice than in controls. Protein-protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas Aldh18a1 and Hspa5 were up-regulated. Conclusion: Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, and mitochondria-related DEGs may be potential therapeutic targets for CME.

17.
J Cereb Blood Flow Metab ; : 271678X241270457, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340267

RESUMO

Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-ß accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, ß-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.

18.
Biomed Pharmacother ; 180: 117455, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341076

RESUMO

INTRODUCTION: This study aims to evaluate the therapeutic effects of sodium octanoate (SO), a medium-chain fatty acid salt, on SIMD in a murine model and to explore its underlying mechanisms. METHODS: Male mice were subjected to sepsis models through two methods: intraperitoneal injection of lipopolysaccharide (LPS) and cecal ligation and punction (CLP). Mice received interval doses of SO every 2 hours or 4 hours for a total of six times or three times after LPS treatment. The relationship between SO and G protein-coupled receptor 84 (GPR84) was evaluated through GEO data analysis and molecular docking studies. DBA/2 mice were used to study the role of the GPR84 protein in the SO-mediated protection. Energy metabolomics was utilized to comprehensively assess the impact of SO on the levels of cardiac energy metabolic products in septic mice. histone modification identification techniques were used to further identify the specific sites of histone modification in the hearts of SO-treated septic mice. RESULTS: SO treatment significantly improved myocardial contractile function, restored the oxidative stress imbalance and enhanced the myocardium's resistance to oxidative injury. SO significantly promotes the expression of GPR84. The loss of GPR84 function markedly attenuates the protective effects of SO. SO enhanced myocardial energy metabolism by promoting the synthesis of acetyl-CoA and upregulating genes involved in fatty acid ß-oxidation which were abolished by medium-chain acyl-CoA dehydrogenase (MCAD) knockdown. SO induced histone acetylation, particularly at H3K123 and H3K80. CONCLUSION: Our study demonstrates that SO exerts protective effects against SIMD through both GPR84-mediated anti-inflammatory and antioxidant actions and GPR84-independent enhancement of myocardial energy metabolism, possibly mediated by MCAD.

19.
PNAS Nexus ; 3(9): pgae357, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39282008

RESUMO

The matrix metalloproteinase MMP14 is a ubiquitously expressed, membrane-bound, secreted endopeptidase that proteolyzes substrates to regulate development, signaling, and metabolism. However, the spatial and contextual events inciting MMP14 activation and its metabolic sequelae are not fully understood. Here, we introduce an inducible, hepatocyte-specific MMP14-deficient model (MMP14LKO mice) to elucidate cell-intrinsic and systemic MMP14 function. We show that hepatocyte MMP14 mediates diet-induced body weight gain, peripheral adiposity, and impaired glucose homeostasis and drives diet-induced liver triglyceride accumulation and induction of hepatic inflammatory and fibrotic gene expression. Single-nucleus RNA sequencing revealed that hepatocyte MMP14 mediates Kupffer cell and T-cell accumulation and promotes diet-induced hepatocellular subpopulation shifts toward protection against lipid absorption. MMP14 co-immunoprecipitation and proteomic analyses revealed MMP14 substrate binding across both inflammatory and cytokine signaling, as well as metabolic pathways. Strikingly, hepatocyte MMP14 loss-of-function suppressed skeletal muscle and adipose inflammation in vivo, and in a reductionist adipose-hepatocyte co-culture model. Finally, we reveal that trehalose-type glucose transporter inhibitors decrease hepatocyte MMP14 gene expression and nominate these inhibitors as translatable therapeutic metabolic agents. We conclude that hepatocyte MMP14 drives liver and inter-organ inflammatory and metabolic sequelae of obesogenic dietary insult. Modulating MMP14 activation and blockade thus represents a targetable node in the pathogenesis of hepatic inflammation.

20.
J Headache Pain ; 25(1): 163, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350002

RESUMO

BACKGROUND: Chronic migraine is closely related to the dysregulation of neurochemical substances in the brain, with metabolic imbalance being one of the proposed causes of chronic migraine. This study aims to evaluate the metabolic changes between energy metabolism and excitatory and inhibitory neurotransmitters in key brain regions of mice with chronic migraine-like state and to uncover the dysfunctional pathways of migraine. METHODS: A chronic migraine-like state mouse model was established by repeated administration of nitroglycerin (NTG). We used von Frey filaments to assess the mechanical thresholds of the hind paw and periorbital in wild-type and familial hemiplegic migraine type 2 mice. After the experiments, tissue was collected from five brain regions: the somatosensory cortex (SSP), hippocampus, thalamus (TH), hypothalamus, and the spinal trigeminal nucleus caudalis (TNC). Proton magnetic resonance spectroscopy (1H-MRS) was employed to study the changes in brain metabolites associated with migraine, aiming to explore the mechanisms underlying metabolic imbalance in chronic migraine-like state. RESULTS: In NTG-induced chronic migraine-like state model, we observed a significant reduction in energy metabolism during central sensitization, an increase in excitatory neurotransmitters such as glutamate, and a tendency for inhibitory neurotransmitters like GABA to decrease. The TNC and thalamus were the most affected regions. Furthermore, the consistency of N-acetylaspartate levels highlighted the importance of the TNC-TH-SSP pathway in the ascending nociceptive transmission of migraine. CONCLUSION: Abnormal energy metabolism and neurotransmitter imbalance in the brain region of NTG-induced chronic migraine-like state model are crucial mechanisms contributing to the chronicity of migraine.


Assuntos
Modelos Animais de Doenças , Metabolismo Energético , Transtornos de Enxaqueca , Nitroglicerina , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Nitroglicerina/farmacologia , Nitroglicerina/toxicidade , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Vasodilatadores/farmacologia , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...