Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.025
Filtrar
1.
Gut Microbes ; 16(1): 2410476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360551

RESUMO

The gut microbiome is indispensable for the host physiological functioning. Yet, the impact of non-nutritious dietary compounds on the human gut microbiota and the role of the gut microbes in their metabolism and potential adverse biological effects have been overlooked. Identifying potential hazards and benefits would contribute to protecting and harnessing the gut microbiome's role in supporting human health. We discuss the evidence on the potential detrimental impact of certain food additives and microplastics on the gut microbiome and human health, with a focus on underlying mechanisms and causality. We provide recommendations for the incorporation of gut microbiome science in food risk assessment and identify the knowledge and tools needed to fill these gaps. The incorporation of gut microbiome endpoints to safety assessments, together with well-established toxicity and mutagenicity studies, might better inform the risk assessment of certain contaminants in food, and/or food additives.


Assuntos
Aditivos Alimentares , Inocuidade dos Alimentos , Microbioma Gastrointestinal , Humanos , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/metabolismo , Medição de Risco , Animais , Contaminação de Alimentos/análise , Microplásticos/toxicidade , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
2.
J Transl Med ; 22(1): 905, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370517

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) is on the rise in developing countries, and investigating the underlying mechanisms of IBD is essential for the development of targeted therapeutic interventions. Interferon regulatory factor 7 (IRF7) is known to exert pro-inflammatory effects in various autoimmune diseases, yet its precise role in the development of colitis remains unclear. METHODS: We analyzed the clinical significance of IRF7 in ulcerative colitis (UC) by searching RNA-Seq databases and collecting tissue samples from clinical UC patients. And, we performed dextran sodium sulfate (DSS)-induced colitis modeling using WT and Irf7-/- mice to explore the mechanism of IRF7 action on colitis. RESULTS: In this study, we found that IRF7 expression is significantly reduced in patients with UC, and also demonstrated that Irf7-/- mice display heightened susceptibility to DSS-induced colitis, accompanied by elevated levels of colonic and serum pro-inflammatory cytokines, suggesting that IRF7 is able to inhibit colitis. This increased susceptibility is linked to compromised intestinal barrier integrity and impaired expression of key molecules, including Muc2, E-cadherin, ß-catenin, Occludin, and Interleukin-28A (IL-28A), a member of type III interferon (IFN-III), but independent of the deficiency of classic type I interferon (IFN-I) and type II interferon (IFN-II). The stimulation of intestinal epithelial cells by recombinant IL-28A augments the expression of Muc2, E-cadherin, ß-catenin, and Occludin. The recombinant IL-28A protein in mice counteracts the heightened susceptibility of Irf7-/- mice to colitis induced by DSS, while also elevating the expression of Muc2, E-cadherin, ß-catenin, and Occludin, thereby promoting the integrity of the intestinal barrier. CONCLUSION: These findings underscore the pivotal role of IRF7 in preserving intestinal homeostasis and forestalling the onset of colitis.


Assuntos
Colite , Sulfato de Dextrana , Fator Regulador 7 de Interferon , Mucosa Intestinal , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Humanos , Colite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Camundongos Knockout , Interleucinas/metabolismo , Modelos Animais de Doenças , Camundongos , Masculino , Citocinas/metabolismo , Interferon lambda
3.
Allergy ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370939

RESUMO

The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.

4.
Respir Res ; 25(1): 367, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385131

RESUMO

BACKGROUND: An increasing amount of evidence supports the relevance of epithelium across the wide spectrum of asthma pathobiology. On a clinical ground tezepelumab, selectively binding TSLP, a major epithelial cytokine, has demonstrated to be effective in asthma patients regardless their specific phenotype. In order to avoid the risk of considering tezepelumab as a not-specific option, the present perspective aims to sketch the tezepelumab best eligible patient profile and to propose some hallmarks of epithelial-driven disease by reviewing the published evidence on the drug mechanism of action and efficacy data. MAIN BODY: Although it cannot rely on standardised or exclusive "markers", the relationship between environment and poor asthma control might suggest a major relevance of the epithelial barrier dysfunction. In that light, allergy and asthma exacerbations concomitant with specific exposures (pathogens, pollutants, chemicals), as well as increased susceptibility to infections can be considered as the hallmark of an impaired epithelial immune response. Tezepelumab is effective in allergic patients, being able to reduce asthma exacerbations precipitated by the exposure to seasonal or perennial aeroallergens, including fungi. In addition, tezepelumab reduced the incidence of co-occurring respiratory illness and asthma exacerbations. In terms of inflammation, epithelial immune response has been related to an impaired mucus hypersecretion and plugging. A placebo-controlled trial demonstrated a significant reduction of mucus plugging in treated patient. Airways hyperreactivity (AHR), airways obstruction and remodelling have been described as an expression of epithelial orchestrated immunological activation. Of note, a significantly higher incidence of mannitol negative test in patients treated with tezepelumab when compared to placebo group has been observed. In addition, A 130 mL improvement in pre-BD FEV1 has been described in patients assuming Tezepelumab. The above-mentioned data suggest that bronchial reversibility and AHR can be considered "functional biomarkers" supporting patients' phenotyping and the identification of tezepelumab best responders. CONCLUSION: Integrating "functional biomarkers" to the inflammatory ones and a better characterization of asthma exacerbations might pave the way to a different and more transversal phenotyping, which overcomes the "restrictive" labels including T2 high, allergic/atopic or T2 low asthma. Precisely defining the disease characteristics and potential targets for a better control even in tezepelumab eligible subjects is essential to avoid the block buster temptation and optimize the personalized medicine approach according to each patient's individuality.


Assuntos
Antiasmáticos , Anticorpos Monoclonais Humanizados , Asma , Humanos , Asma/tratamento farmacológico , Asma/diagnóstico , Asma/imunologia , Asma/epidemiologia , Asma/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiasmáticos/uso terapêutico , Índice de Gravidade de Doença , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39343172

RESUMO

BACKGROUND: Patients with Eosinophilic esophagitis (EoE) require long-lasting resolution of inflammation to prevent fibrostenosis and dysphagia. However, the dissociation between symptoms and histologic improvement suggests persistent molecular drivers despite histologic remission. OBJECTIVE: To characterize persisting molecular alterations in pediatric patients with EoE using tissue transcriptomics and proteomics. METHODS: Esophageal biopsies (n=247) collected prospectively during 189 endoscopies from pediatric patients with EoE (N=36, up to 11 follow-up endoscopies) and pediatric controls (N=44, single endoscopies) were subjected to bulk transcriptomics (n=96) and proteomics (n=151). Intercellular junctions (Desmoglein-1/-3, Desmoplakin, E-cadherin) and epithelial-to-mesenchymal transition (EMT, Vimentin:E-cadherin ratio) were assessed by immunofluorescence staining. RESULTS: Active EoE (≥15 eosinophils/hpf), inactive EoE (<15 eosinophils/hpf) and deep remission EoE (0 eosinophils/hpf) were diagnosed in 107/185, 78/185 and 41/185 biopsies, respectively. Among the dysregulated genes (up-/downregulated 310/112) and proteins (up-/downregulated 68/16) between active EoE and controls, 17 genes and 6 proteins remained dysregulated in inactive EoE. Using persistently upregulated genes (n=9) and proteins (n=3) only, such as ALOX15, CXCL1, CXCL6, CTSG, CDH26, PRRX1, CLC, EPX, and POSTN was sufficient to separate inactive EoE, as well as deep remission biopsies from control tissue. While 32 differentially expressed genes persisted in deep remission of EoE compared to controls, the proteome normalized except for persistently upregulated Periostin (POSTN). Epithelial-mesenchymal transition normalized in inactive EoE, whereas desmosome recovery remained impaired due to Desmoglein-1 downregulation. CONCLUSION: The analysis of molecular changes shows persistent EoE-associated esophageal dysregulation despite histologic remission. These data expand our understanding of inflammatory processes and possible mechanisms that underlie tissue remodeling in EoE.

6.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337373

RESUMO

Microbiota and luminal components may affect epithelial integrity and thus participate in the pathophysiology of colon cancer (CC) and inflammatory bowel disease (IBD). Therefore, we aimed to determine the effects of fecal luminal factors derived from patients with CC and ulcerative colitis (UC) on the colonic epithelium using a standardized colon-derived two-dimensional epithelial monolayer. The complex primary human stem cell-derived intestinal epithelium model, termed RepliGut® Planar, was expanded and passaged in a two-dimensional culture which underwent stimulation for 48 h with fecal supernatants (FS) from CC patients (n = 6), UC patients with active disease (n = 6), and healthy subjects (HS) (n = 6). mRNA sequencing of monolayers was performed and cytokine secretion in the basolateral cell culture compartment was measured. The addition of fecal supernatants did not impair the integrity of the colon-derived epithelial monolayer. However, monolayers stimulated with fecal supernatants from CC patients and UC patients presented distinct gene expression patterns. Comparing UC vs. CC, 29 genes were downregulated and 33 genes were upregulated, for CC vs. HS, 17 genes were downregulated and five genes were upregulated, and for UC vs. HS, three genes were downregulated and one gene was upregulated. The addition of FS increased secretion of IL8 with no difference between the study groups. Fecal luminal factors from CC patients and UC patients induce distinct colonic epithelial gene expression patterns, potentially reflecting the disease pathophysiology. The culture of colonic epithelial monolayers with fecal supernatants derived from patients may facilitate the exploration of IBD- and CC-related intestinal microenvironmental and barrier interactions.


Assuntos
Colite Ulcerativa , Neoplasias do Colo , Fezes , Mucosa Intestinal , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fezes/microbiologia , Mucosa Intestinal/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Masculino , Colo/metabolismo , Colo/patologia , Células Epiteliais/metabolismo , Pessoa de Meia-Idade , Adulto , Citocinas/metabolismo , Células Cultivadas , Idoso
7.
Anim Nutr ; 18: 433-440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309971

RESUMO

Pogostemon cablin essential oil (PEO), extracted from P. cablin, has anti-oxidant, anti-inflammatory, and anti-stress properties, as well as the ability to improve gastrointestinal digestion. This study aims to evaluate the effects of PEO on the performance, rumen epithelial morphology, and barrier function in heat-stressed beef cattle. Thirty-six male Jingjiang cattle at 18 months old were randomly assigned into four groups and fed a diet containing PEO at 0 (control), 50, 100, or 150 mg/kg in the feed concentrate (n = 9). All experimental cattle were fed under high temperature and humidity in summer for 60 days. The results indicated that 50 mg/kg of PEO treatment enhanced the average daily gain of beef cattle compared with the control group (P = 0.032). All PEO treatments reduced the diamine oxidase activity (P = 0.004) and malondialdehyde content (P = 0.008) in serum. In addition, the content of 70 kDa heat shock protein in the 100 mg/kg group was increased, and the activity of glutathione peroxidase and total antioxidant capacity in both 100 mg/kg and 150 mg/kg groups were enhanced compared to the control group (P < 0.05). More importantly, PEO treatment with 50 mg/kg enhanced the mRNA relative expressions of occludin in ruminal epithelia but decreased the mRNA relative expressions of c-Jun N-terminal kinase, P38 mitogen-activated protein kinases, caspase-3, Beclin1 (P < 0.05), and extremely significant declined the mRNA relative expressions of extracellular regulated protein kinases and ubiquitin-binding protein in contrast to the control group (P < 0.01). These findings indicated that dietary PEO supplementation might be favorable to improve growth performance and repairing damaged rumen epithelium of heat-stressed cattle by down-regulating the mitogen-activated protein kinase signaling pathway.

8.
Acta Physiol (Oxf) ; : e14232, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287080

RESUMO

AIM: In the present study, we investigated the involvement of NLRP3 inflammasome in the intestinal epithelial barrier (IEB) changes associated with obesity, and its role in the interplay between enteric glia and intestinal epithelial cells (IECs). METHODS: Wild-type C57BL/6J and NLRP3-KO (-/-) mice were fed with high-fat diet (HFD) or standard diet for 8 weeks. Colonic IEB integrity and inflammasome activation were assessed. Immunolocalization of colonic mucosal GFAP- and NLRP3-positive cells along with in vitro coculture experiments with enteric glial cells (EGCs) and IECs allowed to investigate the potential link between altered IEB, enteric gliosis, and NLRP3 activation. RESULTS: HFD mice showed increased body weight, altered IEB integrity, increased GFAP-positive glial cells, and NLRP3 inflammasome hyperactivation. HFD-NLRP3-/- mice showed a lower increase in body weight, an improvement in IEB integrity and an absence of enteric gliosis. Coculture experiments showed that palmitate and lipopolysaccharide contribute to IEB damage and promote enteric gliosis with consequent hyperactivation of enteric glial NLRP3/caspase-1/IL-1ß signaling. Enteric glial-derived IL-1ß release exacerbates the IEB alterations. Such an effect was abrogated upon incubation with anakinra (IL-1ß receptor antagonist) and with conditioned medium derived from silenced-NLRP3 glial cells. CONCLUSION: HFD intake elicits mucosal enteric gliotic processes characterized by a hyperactivation of NLRP3/caspase-1/IL-1ß signaling pathway, that contributes to further exacerbate the disruption of intestinal mucosal barrier integrity. However, we cannot rule out the contribution of NLRP3 inflammasome activation from other cells, such as immune cells, in IEB alterations associated with obesity. Overall, our results suggest that enteric glial NLRP3 inflammasome might represent an interesting molecular target for the development of novel pharmacological approaches aimed at managing the enteric inflammation and intestinal mucosal dysfunctions associated with obesity.

9.
J Hazard Mater ; 480: 135800, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265397

RESUMO

The global ambient temperature has been rising in recent decades and high temperature is usually accompanied by ozone (O3) pollution. Environmental change is an underlying factor for the increased prevalence of respiratory allergic disease. However, the potential mechanisms are complex and remain elusive. This study was performed to reveal toxic effects and molecular mechanisms of O3 or/and high temperature induced allergic rhinitis (AR) deterioration. The results indicated that O3 and high temperature co-exposure exacerbated rhinitis symptoms, destroyed ultrastructure of nasal mucosa and down-regulated the expression of nasal epithelial barrier structural proteins ZO-1 and occludin. Moreover, the levels of total protein and lactate dehydrogenase (LDH) in nasal lavage fluid and the levels of IL-1ß and TNF-α in serum also exhibited a significant upward trend. Transcriptomic analysis revealed that immune and inflammatory signaling pathways such as IL-17 signaling pathway was involved in the combined toxicity of O3 and high temperature. Microbiome examination showed that Prevotella and Elizabethkingia were linked to nasal injury. What's more, spearman correlation analysis revealed correlations among nasal microbiota dysbiosis, inflammation and injury. To sum up, the present study assessed the combined toxicity of O3 and high temperature and found potential mechanisms, which provided important experimental evidence for making preventive intervention strategies and protecting vulnerable populations.

10.
Mol Med Rep ; 30(4)2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39219265

RESUMO

Indole­3­propionic acid (IPA), a product of Clostridium sporogenes metabolism, has been shown to improve intestinal barrier function. In the present study, in vitro experiments using NCM460 human colonic epithelial cells were performed to investigate how IPA alleviates lipopolysaccharide (LPS)­induced intestinal epithelial cell injury, with the aim of improving intestinal barrier function. In addition, the underlying mechanism was explored. NCM460 cell viability and apoptosis were measured using the Cell Counting Kit­8 assay and flow cytometry, respectively. The integrity of the intestinal epithelial barrier was evaluated by measuring transepithelial electrical resistance (TEER). The underlying molecular mechanism was explored using western blotting, immunofluorescence staining, a dual luciferase reporter gene assay and quantitative PCR. The results showed that 10 µg/ml LPS induced the most prominent decrease in cell viability after 24 h of treatment. By contrast, IPA effectively inhibited LPS­induced apoptosis in the intestinal epithelial cells. Additionally, >0.5 mM IPA improved intestinal barrier function by increasing TEER and upregulating the expression of tight junction proteins (zonula occludens­1, claudin­1 and occludin). Furthermore, IPA inhibited the release of pro­inflammatory cytokines (IL­1ß, IL­6 and TNF­α) in a dose­dependent manner and this was achieved via regulation of the Toll­like receptor 4 (TLR4)/myeloid differentiation factor 88/NF­κB and TLR4/TRIF/NF­κB pathways. In conclusion, IPA may alleviate LPS­induced inflammatory injury in human colonic epithelial cells. Taken together, these results suggest that IPA may be a potential therapeutic approach for the management of diseases characterized by LPS­induced intestinal epithelial cell injury and intestinal barrier dysfunction.


Assuntos
Apoptose , Células Epiteliais , Indóis , Mucosa Intestinal , Lipopolissacarídeos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Indóis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Função da Barreira Intestinal
11.
Mol Biotechnol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240457

RESUMO

Chronic rhinosinusitis (CRS) is a common chronic inflammatory upper respiratory tract, has a major subtype of CRS without nasal polyps (CRSsNP), constituting a great global health problem. Quercetin exerts the important roles in several inflammatory diseases. However, its function in CRSsNP remains unclear. In this study, quercetin dose-dependently alleviated allergic nasal symptoms of increased frequencies of sneezing and nasal scratching in Staphylococcus aureus-constructed CRSsNP mice. Importantly, quercetin attenuated the histopathological changes of nasal mucosa tissue in model mice, including mucosal thickening, glandular hyperplasia, noticeable mast cells, and inflammatory cell infiltration. Concomitantly, quercetin alleviated the increased mucosal inflammation in CRSsNP mice by suppressing the transcripts and releases of pro-inflammatory IL-1ß, IL-6, and IL-4. Notably, quercetin restrained X-box binding protein 1 (XBP1)-mediated activation of the HIF-1α/wnt-ß-catenin axis in nasal mucosal tissues in CRSsNP model. Intriguingly, intranasal instillation of Lv-XBP1 offset the protective efficacy of quercetin against the progression of CRSsNP by suppressing the production of inflammatory cytokine IL-1ß, IL-6, and IL-4, frequency of sneezing and nasal scratching, and histopathological changes of nasal mucosa tissues. In vitro, higher expression of XBP1 was observed in human nasal epithelial cells (HNECs) of CRSsNP relative to the normal HNECs. Moreover, elevation of XBP1 by Lv-XBP1 treatment suppressed cell proliferation and increased apoptosis of CRSsNP HNECs. Mechanistically, XBP1 overexpression increased the expression of HIF-1α and ß-catenin, indicating the activation of the HIF-1α/wnt-ß-catenin axis. Nevertheless, treatment with quercetin inhibited XBP1-induced cell apoptosis and reversed XBP1-mediated inhibition in cell proliferation in HNECs, as well as the activation of the HIF-1α/wnt-ß-catenin axis. Thus, these findings reveal that quercetin may attenuate the progression of CRSsNP by inhibiting nasal mucosal inflammation and epithelial barrier dysfunction via blocking the XBP1/HIF-1α/wnt-ß-catenin pathway, supporting a promising agent against CRSsNP.

12.
bioRxiv ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229135

RESUMO

Background: Eosinophilic esophagitis (EoE) is a chronic allergic disease characterized by esophageal dysfunction, type-2 inflammation, and esophageal eosinophilic infiltrate. While proton pump inhibitor (PPI) therapy is commonly used for EoE management, the underlying mechanism of action remains unclear. Methods: Air-liquid interface culture of esophageal epithelial cells was employed to investigate the impact of the PPI omeprazole on barrier integrity in IL-13-treated cultures. Epithelial chemokine secretion was assessed following stimulation with IL-13 and omeprazole, and the migration of eosinophils from healthy human donors was evaluated using 3 µm pore-sized transwells. A co-culture system of epithelial cells and eosinophils was employed to study chemokine secretion and eosinophil adhesion and activation markers. Results: Omeprazole treatment in the IL-13-treated air-liquid interface (ALI) model resulted in 186 differentially expressed genes and restored barrier integrity compared to ALI treated with IL-13 alone. Omeprazole treatment reduced STAT6 phosphorylation, downregulated calpain 14, and upregulated desmoglein-1 in the IL-13-treated air-liquid interface samples. IL-13-induced upregulation of Eotaxin-3, CXCL10, and periostin, but this was downregulated by omeprazole. Further, the expression of CD11b, CD18, and CD69 was lower on eosinophils from omeprazole-treated epithelial-eosinophil co-cultures, which also had lower levels of eotaxin-3, CXCL10, CCL2, and CCL4. Conclusion: Omeprazole reduced the effects of IL-13 in both the epithelial air-liquid interface model and eosinophil-epithelial co-cultures, reducing barrier dysfunction, chemokine expression, and upregulation of eosinophil adhesion markers.

13.
Clin Sci (Lond) ; 138(19): 1209-1226, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222031

RESUMO

Allergens and Th2 cytokines affect the homeostatic environment in the airways, leading to increased mucus production by goblet cells associated with altered adherens junctional complex (AJC) and tight junction (TJ) proteins responsible for maintaining epithelial barrier function. Circadian clock-dependent regulatory mechanisms such as inflammation and epithelial barrier function are gaining more attention due to their therapeutic potential against allergic inflammatory lung diseases. Currently, there are no studies to support whether REV-ERBα activation can attenuate Th2 cytokine-induced epithelial barrier dysfunction in human bronchial epithelial cells. We hypothesized that Th2 cytokine-induced epithelial barrier dysfunction may be protected by activating REV-ERBα. Treatment with Th2 cytokines or HDM significantly reduced the cell impedance, as confirmed by transepithelial electrical resistance (TEER). However, pre-treatment with SR10067 attenuated Th2 cytokine-induced barrier dysfunction, such as decreased permeability, improved TEER, localization of AJC and TJ proteins, and mRNA and protein levels of selected epithelial barrier and circadian clock targets. Overall, we showed for the first time that REV-ERBα activation regulates altered epithelial barrier function that may have direct implications for the treatment of asthma and other allergic diseases.


Assuntos
Brônquios , Citocinas , Células Epiteliais , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Células Th2 , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Citocinas/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Impedância Elétrica , Tiofenos/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo
14.
Biochem Pharmacol ; 229: 116547, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306309

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.

15.
Int Immunopharmacol ; 142(Pt A): 113023, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217886

RESUMO

Corneal neovascularization (CoNV) is the second leading cause of visual impairment worldwide, and current drugs have certain limitations. Inflammatory response is the core pathological process of CoNV. Neutrophil extracellular traps (NETs) are generated after neutrophil activation, which promotes neovascularization. Prior studies demonstrated that bone morphogenetic protein 4 (BMP4) could significantly reduce inflammation and CoNV formation, its exact molecular mechanism remains unclear. Therefore, we stimulated human peripheral blood neutrophils with phorbol myristate acetate (PMA) or deoxyribonuclease I (DNase I) to induce or inhibit NETs formation. By using corneal sutures and subconjunctival injections of NETs or DNase I, rat CoNV models were established. Compared with the suture group, NETs formation and inflammatory cell infiltration in the corneal stroma were significantly increased, corneal edema was aggravated, and the length, area and diameter of CoNV were significantly enhanced in the NETs group. Furthermore, by curetting the corneal epithelial apical junctional complexes (AJCs), a crucial component in preserving the function of the corneal epithelial barrier, we discovered that the damage of AJCs had a significant role in inducing CoNV formation. NETs could induce CoNV formation by injuring corneal epithelial AJCs. Finally, by comparing the aforementioned indicators after the intervention of BMP4, BMP4 inhibitor Noggin and NADPH oxidase (NOX) inhibitor, we finally demonstrated that BMP4 could inhibit NETs-induced inflammation and corneal epithelial AJC injury, repair corneal epithelial barrier function and eventually inhibit CoNV formation by blocking NOX-2-dependent NETs formation.


Assuntos
Proteína Morfogenética Óssea 4 , Neovascularização da Córnea , Epitélio Corneano , Armadilhas Extracelulares , Animais , Humanos , Proteína Morfogenética Óssea 4/metabolismo , Neovascularização da Córnea/patologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Epitélio Corneano/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Modelos Animais de Doenças , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
16.
Environ Sci Technol ; 58(40): 17786-17796, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39345095

RESUMO

Rising environmental concerns associated with the domestic use of solid biofuels have driven the search for clean energy alternatives. This study investigated the in vitro toxicological characteristics of PM2.5 emissions from residential biomass pellet burning using the A549 epithelial cell line. The potential of modern pellet applications to reduce PM2.5 emissions was evaluated by considering both mass reduction and toxicity modification. PM2.5 emissions from raw and pelletized biomass combustion reduced cell viability, indicative of acute toxicity, and also protein expression associated with epithelial barrier integrity, implying further systemic toxicity, potentially via an oxidative stress mechanism. Toxicity varied between PM2.5 emissions from raw biomass and pellets, with pelletized straw and wood inducing cytotoxicity by factors of 0.54 and 1.30, and causing epithelial barrier damage by factors of 1.76 and 2.08, respectively, compared to their raw counterparts. Factoring in both mass reduction and toxicity modifications, PM2.5 emissions from pelletized straw and wood dropped to 1.83 and 5.07 g/kg, respectively, from 30.1 to 9.32 g/kg for raw biomass combustion. This study underscores the effectiveness of pelletized biomass, particularly straw pellets, as a sustainable alternative to traditional biofuels and highlights the necessity of considering changes in toxicity when assessing the potential of clean fuels to mitigate emissions of the PM2.5 complex.


Assuntos
Biomassa , Material Particulado , Material Particulado/toxicidade , Humanos , Poluentes Atmosféricos/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-39302070

RESUMO

Tissue-engineered oral epithelium (ΤΕΟΕ) was developed after comparing various culture conditions, including submerged (SUB) and air-liquid interface (ALI) human cell expansion options. Barrier formation was evaluated via transepithelial electrical resistance (TEER) and calcein permeation via spectrofluorometry. TEOE was further assessed for long-term viability via live/dead staining and development of intercellular connections via transmission electron microscopy. Tissue architecture was evaluated via histochemistry and the expression of pancytokeratin (pCK) via immunohistochemistry. The effect of two commonly used dental resinous monomers on TEOE was evaluated for alterations in cell viability and barrier permeability. ALI/keratinocyte growth factor-supplemented (ALI-KGS) culture conditions led to the formation of an 8-20-layer thick, intercellularly connected epithelial barrier. TEER values of ALI-KGS-developed TEOE decreased compared with all other tested conditions, and the established epithelium intensively expressed pCK. Exposure to dental monomers affected the integrity and architecture of TEOE and induced cellular vacuolation, implicating hydropic degeneration. Despite structural modifications, the permeability of TEOE was not substantially affected after exposure to the monomers. In conclusion, the biological properties of the TEOE mimicking the physiological functional conditions and its value as biocompatibility assessment tool for dental materials were characterized.

18.
J Agric Food Chem ; 72(38): 21000-21012, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39271472

RESUMO

The higher prevalence of ulcerative colitis (UC) and the side effects of its therapeutic agents contribute to finding novel treatments. This study aimed to investigate whether kynurenine (KYN), a tryptophan metabolite, has the possibility of alleviating UC and further clarifying the underlying mechanism. The effect of KYN on treating UC was evaluated by intestinal pathology, inflammatory cytokines, and tight-junction proteins in colitis mice and LPS-stimulated Caco-2 cells. Our results revealed that KYN relieved pathological symptoms of UC, improved intestinal barrier function, enhanced AhR expression, and inhibited NF-κB signaling pathway activation in the colon of colitis mice. Moreover, the improved intestinal barrier function, the decreased inflammasome production, and the inhibited activation of the NF-κB signaling pathway by KYN were dependent on AhR in Caco-2 cells. KYN could trigger AhR activation, inactivate the NF-κB signaling pathway, and inhibit NLRP3 inflammasome production, thus alleviating intestinal epithelial barrier dysfunction and reducing intestinal inflammation. In conclusion, the present study reveals that KYN ameliorates UC by improving the intestinal epithelial barrier and activating the AhR-NF-κB-NLRP3 signaling pathway, and it can be a promising therapeutic agent and dietary supplement for alleviating UC.


Assuntos
Colite Ulcerativa , Cinurenina , Camundongos Endogâmicos C57BL , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Animais , Cinurenina/metabolismo , Humanos , Camundongos , Células CACO-2 , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/genética , Inflamassomos/efeitos dos fármacos
19.
Food Chem Toxicol ; 192: 114966, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197527

RESUMO

Advanced glycation end products (AGEs) are a spectrum of complex compounds widely found in processed foods and frequently consumed by humans. AGEs are implicated in impairing the intestinal barrier, but the underlying mechanisms remain unclear. This study investigated the effects of three types of AGEs on gene expression of tight junctions (TJs) in colorectal epithelial HT-29 cells, and observed minimal alterations in TJs expression. Given the important role of subepithelial macrophages in regulating the intestinal barrier, we explored whether AGEs affect the intestinal barrier via the involvement of macrophages. Notably, a significant downregulation of TJs expression was observed when supernatants from AGEs-treated RAW264.7 macrophage cells were transferred to HT-29 cells. Further investigations indicated that AGEs increased IL-6 levels in RAW264.7 cells, subsequently triggering STAT3 activation and suppressing TJs expression in HT-29 cells. The role of STAT3 activation was confirmed by observing enhanced TJs expression in HT-29 cells following pretreatment with an inhibitor of STAT3 activation prior to the transfer of the conditioned medium. These findings demonstrated that AGEs impaired the intestinal barrier via macrophage-mediated STAT3 activation, shedding light on the mechanisms underlying AGEs-induced intestinal barrier injury and related food safety risks.


Assuntos
Produtos Finais de Glicação Avançada , Mucosa Intestinal , Macrófagos , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células HT29 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células RAW 264.7 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética
20.
Tissue Cell ; 90: 102514, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121582

RESUMO

The vocal folds vibrate to produce voice, undergoing significant stress due to contact and shearing force. The epithelium operates as the primary protective layer of the tissue against stress and vibratory damage, as well as to provide a barrier against foreign organisms and toxins. Within the vocal fold epithelium, non-epithelial cells were identified that may interrupt the epithelium and compromise the epithelial barrier's protective function. Human vocal fold samples with a variety of pathologies were compared to normal vocal folds. Analysis included the number of cells in the epithelium and epithelial thickness. Vocal fold sections from 10 human tissue samples were assessed via H&E staining and immunofluorescent co-labeling. Three cell populations (vimentin expressing, CD-45 expressing, and cells expressing both) were identified within the epithelium. Statistical analysis revealed that the abnormal samples had a significantly greater number of vimentin-positive cells/area within the epithelium compared to the normal samples. Additionally, normal tissue samples had a significantly greater epithelial depth, suggesting a more robust epithelial barrier compared to tissue with pathology. Knowledge of the function of these cells could lead to a better understanding of how the local immune environment near and within vocal fold epithelium changes in the presence of different pathologies.


Assuntos
Prega Vocal , Prega Vocal/citologia , Prega Vocal/metabolismo , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Masculino , Epitélio/metabolismo , Feminino , Vimentina/metabolismo , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...