Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.714
Filtrar
1.
J Perinat Med ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091206

RESUMO

OBJECTIVES: The aim of this study was to describe the prenatal ultrasound findings of fetuses with skeletal dysplasia and to evaluate the genetic variations by molecular genetic analysis. METHODS: Between August 1, 2018 and March 1, 2023, we conducted a retrospective case series at a tertiary referral center involving patients with fetal skeletal abnormalities. For cases referred for a possible diagnosis of fetal skeletal dysplasia, an ultrasound database and prenatal genetic counseling records were first searched. Terminated cases diagnosed with skeletal dysplasia by pathologic and radiologic findings and cases with skeletal dysplasia proven by postnatal clinical findings were included in the study. RESULTS: Between 2018 and 2023, a total of 64 cases were diagnosed as skeletal dysplasia based on radiologic findings, pathologic findings, and clinical features. The median week of the first ultrasound performed on patients is 19 0/7 weeks, while the median week of the ultrasound in which skeletal dysplasia is suspected is 21 3/7 weeks. Although micromelia was evaluated as a common feature in all cases, the most common concomitant anomaly was thoracic hypoplasia. Exome sequencing analysis was achieved in 31 (48 %) of cases. In 31 cases, in total of 35 pathogenic single gene mutations and 5 VUS (variants of uncertain significance) variants composing of 23 autosomal dominant, 10 autosomal recessive and 2 X linked recessive mutations were determined. CONCLUSIONS: Prenatal ultrasound findings can lead us to specific diagnoses, and with the appropriate molecular analysis method, a definitive diagnosis can be made without wasting time and money.

2.
J Pediatr Genet ; 13(3): 205-210, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39086438

RESUMO

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inborn error of metabolism, is an inherited syndrome caused by loss-of-function mutations in the SLC25A15, resulting in ornithine translocase1 (ORNT1) deficiency. Disrupted ornithine transportation in an affected individual usually manifests with the accumulation of intermediate metabolites, leading to neurological impairment, hepatitis, and/or protein intolerance at various ages of onset. In this paper, we report a compound heterozygous mutation in SLC25A15 from a 2-year-old girl who presented with neurological alterations and hepatic failure. Before developing neurological sequelae, she had signs of globally delayed development. The accumulation of toxic metabolites may explain these neurological consequences. After biochemical confirmation of HHH, whole-exome sequencing (WES) was performed, which identified mutations at codons 21 and 179 of SLC25A15 that are predicted to result in the loss of function of ORNT1. Each of the mutations was found to be inherited from one of her parents. After therapy, her toxic metabolites decreased significantly. In conclusion, HHH syndrome frequently manifests with nonspecific symptoms and unapparent biochemical profiles, which may lead to delayed diagnosis. Correction of the accumulating metabolites is necessary to prevent irreversible neurological impairment. Furthermore, performing a WES provides a shortcut for accurate diagnosis.

3.
BMC Med Genomics ; 17(1): 196, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103847

RESUMO

BACKGROUND AND OBJECTIVE: Autosomal recessive genetic disorders pose significant health challenges in regions where consanguineous marriages are prevalent. The utilization of exome sequencing as a frequently employed methodology has enabled a clear delineation of diagnostic efficacy and mode of inheritance within multiplex consanguineous families. However, these aspects remain less elucidated within simplex families. METHODS: In this study involving 12 unrelated simplex Iranian families presenting syndromic autism, we conducted singleton exome sequencing. The identified genetic variants were validated using Sanger sequencing, and for the missense variants in FOXG1 and DMD, 3D protein structure modeling was carried out to substantiate their pathogenicity. To examine the expression patterns of the candidate genes in the fetal brain, adult brain, and muscle, RT-qPCR was employed. RESULTS: In four families, we detected an autosomal dominant gene (FOXG1), an autosomal recessive gene (CHKB), and two X-linked autism genes (IQSEC2 and DMD), indicating diverse inheritance patterns. In the remaining eight families, we were unable to identify any disease-associated genes. As a result, our variant detection rate stood at 33.3% (4/12), surpassing rates reported in similar studies of smaller cohorts. Among the four newly identified coding variants, three are de novo (heterozygous variant p.Trp546Ter in IQSEC2, heterozygous variant p.Ala188Glu in FOXG1, and hemizygous variant p.Leu211Met in DMD), while the homozygous variant p.Glu128Ter in CHKB was inherited from both healthy heterozygous parents. 3D protein structure modeling was carried out for the missense variants in FOXG1 and DMD, which predicted steric hindrance and spatial inhibition, respectively, supporting the pathogenicity of these human mutants. Additionally, the nonsense variant in CHKB is anticipated to influence its dimerization - crucial for choline kinase function - and the nonsense variant in IQSEC2 is predicted to eliminate three functional domains. Consequently, these distinct variants found in four unrelated individuals with autism are likely indicative of loss-of-function mutations. CONCLUSIONS: In our two syndromic autism families, we discovered variants in two muscular dystrophy genes, DMD and CHKB. Given that DMD and CHKB are recognized for their participation in the non-cognitive manifestations of muscular dystrophy, it indicates that some genes transcend the boundary of apparently unrelated clinical categories, thereby establishing a novel connection between ASD and muscular dystrophy. Our findings also shed light on the complex inheritance patterns observed in Iranian consanguineous simplex families and emphasize the connection between autism spectrum disorder and muscular dystrophy. This underscores a likely genetic convergence between neurodevelopmental and neuromuscular disorders.


Assuntos
Consanguinidade , Sequenciamento do Exoma , Linhagem , Humanos , Irã (Geográfico) , Masculino , Feminino , Transtorno Autístico/genética , Criança , Fatores de Transcrição Forkhead/genética , Proteínas do Tecido Nervoso/genética , Adulto , Síndrome , Exoma/genética , Pré-Escolar
4.
Front Neurosci ; 18: 1391596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108315

RESUMO

Background: The objective of this study was to explore the genetic etiology and propose a genetic diagnosis and counseling strategy for children with retinoblastoma (RB) and global developmental delay (GDD). Case presentation: We report on a 2 years and 4 months old boy with binocular retinoblastoma and global developmental delay (included intellectual disability, language development delay, motor development delay, etc.). Genomic DNA was extracted from peripheral blood mononuclear cells isolated from the proband and his parents. Whole exome sequencing (WES) was carried out for the proband and his parents to identify genetic etiology, which was subsequently verified by quantitative polymerase chain reaction (qPCR).The WES revealed a gross heterozygous deletion in the RB transcriptional corepressor 1 (RB1, OMIM:614041) gene, including exon 7-8, in the affected proband but not in his parents. Additionally, two pathogenic copy number variations (CNVs) were identified: a duplication at 7q11.23 and a microdeletion at 16p11.2-p12.2, respectively. Furthermore, the genomic qPCR analysis demonstrated a 50% reduction in the copy numbers of exon 7 and exon 8 in the RB1 gene of the proband, as compared to those detected in his parents. Simultaneous variants in the RB1 gene and two pathogenic CNVs can precisely explain the genetic etiology of the proband. Conclusion: The present study firstly reports a novel gross deletion variant of the RB1 gene coexisting with two pathogenic CNVs in a pediatric patient with retinoblastoma and comorbid global developmental delay in China. Additionally, our findings strongly support the use of WES in pediatric patients with RB comorbid GDD, and WES is recommended as the first-tier test.

5.
Clin Case Rep ; 12(8): e9265, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109314

RESUMO

Whole-exome sequencing (WES) analysis of an expansive case florid cemento-osseus dysplasia were reported for the first time. Also, the new potential candidate genes were reported to expand our knowledge about their molecular pathogenesis. Abstract: We report a case of expansive florid cemento-osseus dysplasia in a 32-year-old female patient who presented an expansive tumoral lesion in the anterior mandible. As florid cemento-osseus dysplasia have only been molecularly investigated using targeted-sequencing, fragments of the lesion were collected and subjected to molecular investigation using WES to assess somatic mutations as well as copy number alterations. No gains and losses of chromosomal arms or segments longer than 1 Mb were detected. Our findings revealed a pathogenic stopgain variant at the KIF5C gene, a stoploss variant at MAPK10, and missense SNV at COL6A2 at DCDC1, suggesting potential candidate genes associated with florid cemento-osseus dysplasia.

6.
Ter Arkh ; 96(6): 559-564, 2024 Jul 07.
Artigo em Russo | MEDLINE | ID: mdl-39106495

RESUMO

Various rare inherited disorders can be associated with kidney involvement, including glomerulopathies, tubulopathies, multiple cysts, congenital anomalies of the kidneys and urinary tract, urolithiasis, malignant and benign tumors. Genetic nephropathy should be always considered in children, adolescents and young patients with the kidneys or urinary tract disorders and/or patients with positive family anamnesis. Extrarenal manifestations can be a valuable clue for diagnosis of certain hereditary diseases, e.g. neurosensory deafness in Alport syndrome or photofobia in nephropathic cystinosis. Diagnosis of monogenic inherited diseases should be verified by genetic testing. Specific drugs are available for treatment of certain hereditary diseases involving kidney, e.g. Fabry disease, cystinosis, primary hyperoxaluria I type and atypical hemolytic uremic syndrome.


Assuntos
Nefropatias , Doenças Raras , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Nefropatias/etiologia , Testes Genéticos/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/complicações
7.
Clin Genet ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107234

RESUMO

Hearing loss is one of the most prevalent genetic disorders in humans. Locus and allelic heterogeneity cause fundamental challenges in hearing loss genetic diagnosis and management of patients and their families. This study examined the genetic profile of patients with prelingual hearing loss who were referred to the Genetic Foundation of Khorasan Razavi spanning over a decade. Deleterious variants in GJB2 were evaluated through Sanger sequencing among 745 non-syndromic hearing loss patients. Furthermore, exome sequencing was applied in 250 patients with negative GJB2 sequencing results and 30 patients with syndromic hearing loss. The findings revealed a relatively low frequency of GJB2 variants among the studied patients. Exome sequencing successfully identified the genetic causes of hearing loss in 70% of the patients. Moreover, variants in 10 genes, namely SLC26A4, MYO15A, TMPRSS3, TMC1, OTOF, CDH23, PJVK, MYO7A, TECTA, and PCDH15, accounted for 66% of the positive exome sequencing findings in this study. At least three prevalent founder alleles in the hearing-impaired population of eastern Iran were identified. This study emphasizes the efficiency of exome sequencing as a powerful tool for determining the etiology of prelingual hearing loss in the eastern Iranian population.

8.
BMC Pediatr ; 24(1): 494, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095761

RESUMO

BACKGROUND: Alström syndrome (AS) is a rare autosomal recessive disorder that leads to multiple organ fibrosis and failure. Precise diagnosis from the clinical symptoms is challenging due to its highly variabilities and its frequent confusion with other ciliopathies and genetic diseases. Currently, mutations in the ALMS1 gene have been reported as a major cause of AS, thus, it is crucial to focus on the detection and discovery of ALMS1 mutations. CASE PRESENTATION: We present a case of a 13-year-old Chinese boy weighing 70 kg and standing 168 cm tall. He has two younger brothers. Their parents hail from different ancestral homes in eastern and northern China. The patient's primary clinical findings included visual impairment at the age of four and progressive hearing loss starting at the age of ten. Subsequently, at the age of twelve, the patient developed hyperlipidaemia and hyperinsulinemia. Ultrasonographic findings indicated the presence of gallstones and mild fatty liver. His Body Mass Index (BMI) significantly increased to 25 kg/m2 (ref: 18.5-23.9 kg/m2). Additionally, echocardiography revealed mild mitral and tricuspid regurgitation. Ultimately, Whole Exome Sequencing (WES) identified a new missense mutation in the ALMS1 gene (NG_011690.1 (NM_015120): c.9536G > A (p.R3179Q)). This missense mutation generated an aberrant splicer and disrupted the stability and hydrophobicity of proteins, which preliminarily determined as " likely pathogenic". Therefore, considering all the above symptoms and molecular analysis, we deduced that the patient was diagnosed with AS according to the guidelines. We recommended that he continue wearing glasses and undergo an annual physical examination. CONCLUSION: In this case report, we report a novel homozygous ALMS1 mutation associated with AS in the Chinese population, which expands the mutation spectrum of ALMS1. Genetic testing indeed should be incorporated into the diagnosis of syndromic deafness, as it can help avoid misdiagnoses of AS. While there is no specific treatment for AS, early diagnosis and intervention can alleviate the progression of some symptoms and improve patients' quality of life.


Assuntos
Síndrome de Alstrom , Proteínas de Ciclo Celular , Sequenciamento do Exoma , Humanos , Masculino , Síndrome de Alstrom/genética , Síndrome de Alstrom/diagnóstico , Adolescente , Proteínas de Ciclo Celular/genética , Mutação de Sentido Incorreto , Linhagem , China , População do Leste Asiático
9.
Cureus ; 16(7): e63828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39099920

RESUMO

A class of genetically based congenital myopathies known as nemaline myopathies is defined by the development of nemaline rods within muscle fibers. We present a case involving an eight-year-old boy who presented with a history of delayed motor development, proximal muscle weakness, and neck flexor weakness. Muscle enzymes were normal, and electrophysiological studies revealed a myopathic pattern. Nemaline myopathy (NM) was diagnosed with the help of clinical exome sequencing, which showed a compound heterozygous mutation with a novel variant in the nebulin (NEB) gene.

10.
Mol Biol Rep ; 51(1): 899, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115759

RESUMO

BACKGROUND: Global developmental delay with speech and behavioral abnormalities (OMIM: 619243) is an autosomal dominant disease caused by variants in TNRC6B gene. METHOD: We reviewed and summarized clinical manifestations and genotypes in patients previously reported with TNRC6B gene variants. We used several prediction tools to predict pathogenicity and performed minigene assays to verify the function of the synonymous variant affecting RNA splicing. RESULT: The patient presented with convulsive seizures and developmental delay. WES combined with functional studies diagnosed a child with a synonymous variant in TNRC6B gene. Through minigene assay and Sanger sequencing, we demonstrated that c.3141G > A variant induced exon 7 skipping and the synonymous variant was pathogenic. CONCLUSION: Synonymous variants do not change the amino acids encoded by the codon, so we usually consider synonymous variants to be benign and ignore their pathogenicity. Minigene assay is a valuable tool to identify the effect of variation on RNA splicing and identify synonymous variants' benign or pathogenic. We showed that the synonymous variant was pathogenic by minigene assay. WES combined with minigene assay establishes a robust basis for genetic counseling and diagnosing diseases.


Assuntos
Splicing de RNA , Humanos , Splicing de RNA/genética , Deficiências do Desenvolvimento/genética , Éxons/genética , Masculino , Mutação Silenciosa , Sequenciamento do Exoma/métodos , Feminino , Genótipo , Criança , Pré-Escolar
11.
EMBO Mol Med ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122888

RESUMO

Collecting duct carcinoma (CDC) is an aggressive rare subtype of kidney cancer with unmet clinical needs. Little is known about its underlying molecular alterations and etiology, primarily due to its rarity, and lack of preclinical models. This study aims to comprehensively characterize molecular alterations in CDC and identify its therapeutic vulnerabilities. Through whole-exome and transcriptome sequencing, we identified KRAS hotspot mutations (G12A/D/V) in 3/13 (23%) of the patients, in addition to known TP53, NF2 mutations. 3/13 (23%) patients carried a mutational signature (SBS22) caused by aristolochic acid (AA) exposures, known to be more prevalent in Asia, highlighting a geologically specific disease etiology. We further discovered that cell cycle-related pathways were the most predominantly dysregulated pathways. Our drug screening with our newly established CDC preclinical models identified a CDK9 inhibitor LDC000067 that specifically inhibited CDC tumor growth and prolonged survival. Our study not only improved our understanding of oncogenic molecular alterations of Asian CDC, but also identified cell-cycle machinery as a therapeutic vulnerability, laying the foundation for clinical trials to treat patients with such aggressive cancer.

12.
J Bone Miner Res ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126371

RESUMO

BACKGROUND: Several small genetic association studies have been conducted for atypical femur fracture (AFF) without replication of results. We assessed previously implicated and novel genes associated with AFFs in a larger set of unrelated AFF cases using whole exome sequencing (WES). METHODS: We performed gene-based association analysis on 139 European AFF cases and 196 controls matched for bisphosphonate use. We tested all rare, protein-altering variants using both candidate gene and hypothesis-free approaches. In the latter, genes suggestively associated with AFFs (uncorrected P-values <0.01) were investigated in a Swedish whole-genome sequencing replication study and assessed in 46 non-European cases. RESULTS: In the candidate gene analysis, PLOD2 showed a suggestive signal. The hypothesis-free approach revealed 10 tentative associations, with XRN2, SORD, and PLOD2 being the most likely candidates for AFF. XRN2 and PLOD2 showed consistent direction of effect estimates in the replication analysis, albeit not statistically significant. Three SNPs associated with SORD expression according to the GTEx portal, were in linkage disequilibrium (R2 ≥ 0.2) with a SNP previously reported in a genome-wide association study of AFF. The prevalence of carriers of variants for both PLOD2 and SORD was higher in Asian versus European cases. CONCLUSIONS: While we did not identify genes enriched for damaging variants, we found suggestive evidence of a role for XRN2, PLOD2 and SORD, which requires further investigation. Our findings indicate that genetic factors responsible for AFFs are not widely shared among AFF cases. The study provides a stepping-stone for future larger genetic studies of AFF.


We investigated the genetic factors contributing to atypical femur fractures (AFF), which are rare and unusual fractures in the thigh bone These fractures are related to the use of bisphosphonates, which are prescribed to prevent fractures caused by osteoporosis. Previous studies suggested potential genetic links, but their findings were not confirmed in larger groups. To address this, we analyzed genetic data from 139 European individuals with AFF and 196 individuals without AFF, all of whom used bisphosphonates, using a genetic technique called whole exome sequencing (WES). Our results suggested three genes­XRN2, SORD, and PLOD2­might be linked to AFF, although the evidence was not conclusive. Importantly, our findings suggest that AFF may be caused by different genes in different individuals. A much larger sample size is now needed to fully understand the genetic architecture of AFF. These findings may guide future research into the genetic causes of AFF.

13.
Prenat Diagn ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117575

RESUMO

OBJECTIVE: To assess the genetic etiologies underlying agenesis of the corpus callosum (ACC) and its pregnancy outcomes in the era of next-generation sequencing. METHODS: A retrospective analysis was conducted on prospectively collected prenatal ACC cases in which amniocentesis was performed between January 2016 and December 2022. ACC was divided into non-isolated and isolated according to the presence or absence of ultrasound abnormalities. Chromosomal microarray analysis (CMA), karyotyping and exome sequencing (ES) were performed after genetic counseling. Pregnancy outcomes were assessed by pediatric neurosurgeons and were followed up by telephone through their parents. RESULTS: Sixty-eight fetuses with ACC were enrolled in this study. CMA detected eight cases with pathogenic copy number variants (CNVs) and all were non-isolated ACC, with a detection rate of 11.8% (8/68). Among the CMA abnormalities, the majority (6/8) were detectable by karyotyping. ES was performed in 26 cases with normal CMA, revealing pathogenic or likely pathogenic gene variations in 12 cases (46.2%, 12/26), involving L1CMA, SMARCB1, PPP2R1A, ARID1B, USP34, CDC42, NFIA and DCC genes. The detection rates of ES in isolated and non-isolated ACC were 40% (6/15) and 54.5% (6/11), respectively. After excluding cases where pregnancy was terminated (56 cases), there were 12 live births, ranging in age from 15 months to 7 years. Of these, 91.7% (11 out of 12) demonstrated normal neurodevelopmental outcomes. Specifically, all five cases with isolated ACC and negative ES results exhibited normal neurodevelopment. The remaining six cases with favorable outcomes were all isolated ACC, among which ES identified variants of DCC and USP34 gene in one each case. The other four cases were CMA-negative and declined ES. CONCLUSIONS: We highlight the efficacy of prenatal ES in determining the genetic etiology of ACC, whether isolated or not. Favorable neurodevelopmental outcomes were observed when ACC was isolated and with normal ES results.

14.
Andrology ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120565

RESUMO

Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.

15.
Mol Syndromol ; 15(4): 317-323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119449

RESUMO

Introduction: Smith-Lemli-Opitz syndrome (SLOS), a genetic developmental disorder characterized by various congenital anomalies, arises from a loss of normal DHCR7 enzymatic action in cholesterol biosynthesis. This syndrome is typically marked by various congenital anomalies, including microcephaly with cognitive impairments, distinctive facial features, and syndactyly of the toes (2-3 fusion). Case Presentation: A 73-year-old woman, followed up on by the neurology clinic for the last 3 years for amnesia and movement disorders, was referred to our clinic for genetic etiology investigation. Although there were no significant dysmorphic findings on her physical examination, observations included partial syndactyly between the second and third toes of both feet, a wide forehead, and a triangular face. We used the whole-exome sequencing (WES) analysis to evaluate the patient because of their various phenotype, which included dysmorphic features, movement problems, recurrent hip dislocation, mild intellectual impairment. WES analysis revealed a homozygous missense c.1295A>G (p.Tyr432Cys) variation in DHCR7 gene. Discussion: A total of 9 patients with p.Tyr432Cys variant have been reported in the literature so far. The present case is the first patient with biallelic c.1295A>G (p.Tyr432Cys) variation in DHCR7 gene in the current literature. Diagnosing the disorder can be challenging, particularly in its milder manifestations, given the extensive range of clinical presentations. The present case is the oldest patient with SLOS reported in the relevant literature. Mild dysmorphic features, mild intellectual disability, and recurrent hip dislocation, along with the typical finding of syndactyly between the second and third toes in the foot, may indicate mild forms of SLOS.

16.
Mol Syndromol ; 15(4): 339-346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119450

RESUMO

Introduction: Kallmann syndrome (KS) is a genetically heterogeneous developmental disorder that most often manifests hypogonadotropic hypogonadism (HH) and hypo-/anosmia due to early embryonic impairment in the migration of gonadotropin-releasing hormone neurons. SOX10 (SRY-Box 10; MIM*602229), a key transcriptional activator involved in the development of neural crest cells, has been associated with KS and is identified as one of the causative genes of Waardenburg syndrome (WS). Case Presentation: A 28-year-old female patient, who was clinically diagnosed with KS in her childhood, presented with HH and anosmia, mild bilateral sensorineural hearing loss (SNHL), and pigmentation abnormalities. Next-generation sequencing analysis detected a missense heterozygous SOX10 pathogenic variant (NM_006941.4:c.506C>T) in the proposita and in her mother, whose phenotype included exclusively anosmia and hypopigmented skin patches. The same variant has been described by Pingault et al. [Clin Genet. 2015;88(4):352-9] in a patient with apparently isolated bilateral severe SNHL. Conclusion: Our finding substantiates the extreme phenotypic variability of SOX10-related disorders, which range from classical KS and/or WS to contracted endophenotypes that could share a common pathway in the development of neural crest cells and highlights the need for careful evaluation and long-term follow-up of SOX10 patients, with special focus on atypical/additional and/or late-onset phenotypic traits.

17.
Mol Syndromol ; 15(4): 275-283, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119454

RESUMO

Introduction: Diencephalic-mesencephalic junction dysplasia syndrome is a rare neurogenetic disorder reported to be caused by variants in several genes. Phenotypic presentation is characterized by clinical findings including developmental delay, hypotonia, spasticity, and dyskinetic movements in combination with distinctive imaging features on brain magnetic resonance imaging (MRI). Methods: Whole exome sequencing was conducted to unveil the molecular etiology of patients presenting with neurological manifestations from two unrelated families. Results: To the best of our knowledge, here we report the third family affected with diencephalic-mesencephalic junction dysplasia caused by a novel variant in GSX2 and two siblings with a PCDH12 variant exhibiting a less severe phenotype. The siblings with a PCDH12 variant were positioned at the milder end of the phenotypic spectrum. Although both exhibited a clinical phenotype resembling cerebral palsy, one showed partial fusion of the hypothalamus and mesencephalon, whereas MRI was unremarkable in the other. Biallelic GSX2 variants have been implicated in basal ganglia agenesis, and similarly, our patients had basal ganglia hypoplasia along with hypothalamic-mesencephalic fusion. Conclusion: Identifying variants associated with the syndrome in different genes will contribute to genotype-phenotype correlation.

18.
Diagn Pathol ; 19(1): 107, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107787

RESUMO

Cystic fibrosis (CF) is an autosomal recessive inherited disease caused by variants of cystic fibrosis transmembrane conductance regulation (CFTR) gene. This report presents a case of a Chinese boy diagnosed with CF, attributed to the presence of two specific CFTR gene variations: 4056G > C (NM_000492.4) (p.Gln1352His, legacy: Q1352H) and c.1210-34TG[13]T[5] (NM_000492.4)(legacy: 5T; TG13). A ten-year-old boy was admitted to the hospital due to recurrent pneumonia, cough, and intermittent fever for seven years. Lung auscultation revealed rales, and a lung CT scan indicated parenchymal transformation with infection in both lungs. Whole Exome Sequencing (WES) identified two CFTR gene variants, Q1352H and 5T; TG13, which were significantly associated with clinical phenotype. Following a two-year course of azithromycin combined with inhalation therapy with budesonide, the patient experienced no further episodes of respiratory infections. Moreover, significant improvements were observed in pulmonary function, pulmonary infection, and bronchiectasis. The occurrence of combined variations, Q1352H and 5T; TG13, in the CFTR gene is rare and specific to Chinese populations. WES proves to be a valuable diagnostic tool for detecting CFTR gene variants.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Mutação , Humanos , Masculino , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Criança , Povo Asiático/genética , Heterozigoto , Fenótipo , Sequenciamento do Exoma , Antibacterianos/uso terapêutico , População do Leste Asiático
19.
Genome Biol ; 25(1): 210, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107855

RESUMO

BACKGROUND: Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels. RESULTS: Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. CONCLUSIONS: Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.


Assuntos
Processamento Alternativo , Neoplasias Colorretais , Instabilidade de Microssatélites , Fator de Processamento U2AF , Neoplasias Colorretais/genética , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Mutação , Sítios de Ligação , Éxons
20.
Diabetologia ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103720

RESUMO

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD. METHODS: We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters and enhancers using the WGS dataset. RESULTS: In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated common THAP7 rs369250 variant (p=1.50 × 10-5, MAF=49%) was replicated in the FinnGen general population genome-wide association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided suggestive evidence (p<4.0 × 10-4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFß, MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 × 10-5, MAFvariants≤5%) showed interaction with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor. CONCLUSIONS/INTERPRETATION: Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further studies are needed to validate the findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...