Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(1): e0020223, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38047707

RESUMO

YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.


Assuntos
Bacillus subtilis , Carboxiliases , Humanos , Bacillus subtilis/metabolismo , Carboxiliases/genética , Ácido Pirúvico , Oxaloacetatos , Hidrolases/genética
2.
Plant Direct ; 7(9): e531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705693

RESUMO

Infection of Arabidopsis with avirulent Pseudomonas syringae and exposure to nitrogen dioxide (NO2) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue-green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild-type (WT) plants, the phenylpropanoid-deficient mutant fah1 developed normal HCD except for the absence of BG fluorescence. Ultrahigh resolution metabolomics combined with mass difference network analysis revealed that WT but not fah1 plants rapidly accumulate dehydrodimers of sinapic acid, sinapoylmalate, 5-hydroxyferulic acid, and 5-hydroxyferuloylmalate during the HCD. FAH1-dependent BG fluorescence appeared exclusively within dying cells of the upper epidermis as detected by microscopy. Saponification released dehydrodimers from cell wall polymers of WT but not fah1 plants. Collectively, our data suggest that HCD induction leads to the formation of free BG fluorescent dehydrodimers from monomeric sinapates and 5-hydroxyferulates. The formed dehydrodimers move from upper epidermis cells into the apoplast where they esterify cell wall polymers. Possible functions of phenylpropanoid dehydrodimers are discussed.

3.
Biophys Rep ; 9(6): 309-324, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38524699

RESUMO

The liver consists predominantly of hepatocytes and biliary epithelial cells (BECs), which serve distinct physiological functions. Although hepatocytes primarily replenish their own population during homeostasis and injury repair, recent findings have suggested that BECs can transdifferentiate into hepatocytes when hepatocyte-mediated liver regeneration is impaired. However, the cellular and molecular mechanisms governing this BEC-to-hepatocyte conversion remain poorly understood largely because of the inefficiency of existing methods for inducing lineage conversion. Therefore, this study introduces a novel mouse model engineered by the Zhou's lab, where hepatocyte senescence is induced by the deletion of the fumarylacetoacetate (Fah) gene. This model facilitates the efficient conversion of BECs to hepatocytes and allows for the simultaneous lineage tracing of BECs; consequently, a transitional liver progenitor cell population can be identified during lineage conversion. This study also outlines the technical procedures for utilizing this model to determine the underlying cellular and molecular mechanisms of BEC-to-hepatocyte conversion and provides new insights into liver regeneration and its underlying molecular mechanism.

4.
BMC Med Genomics ; 15(1): 251, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463171

RESUMO

BACKGROUND: Hereditary tyrosinemia type 1 (HT1; OMIM# 276700) is a genetic metabolism disorder caused by disease-causing variants in the fumarylacetoacetate hydrolase (FAH) gene encoding the last enzyme of the tyrosine catabolic pathway. Herein, we describe the clinical features and genetic characteristics of HT1 in a five years and seven months old Chinese patient. METHODS: After clinical diagnosis of the proband with HT1, genetic testing was performed by Sanger sequencing of the FAH gene in all family members. Functional analysis of the disease-causing variant was performed by cDNA sequencing to understand the effect of the variant on FAH transcript. To further predict the variant effect, we used Human Splicing Finder (HSF) and PyMol in silico analysis. RESULTS: We identified a novel previously undescribed intronic variant in the FAH gene (c.914-1G>A). It was detected in a child who was homozygous for the variant and had the clinical presentation of HT1. cDNA sequencing showed that this splice-junction variant affected the transcription of FAH by formation of two different transcripts. Our observations and laboratory experiments were in line with in silico methods. CONCLUSIONS: Our study provides new insight into the HT1 variant spectrum and a better understanding of this disease in the Chinese population. This will be useful for molecular diagnosis in our country in cases where premarital screening, prenatal diagnosis and preimplantation genetic diagnosis are planned.


Assuntos
Hidrolases , Tirosinemias , Criança , Humanos , China , DNA Complementar , Homozigoto , Tirosinemias/diagnóstico , Tirosinemias/genética , Hidrolases/genética
5.
Front Immunol ; 13: 950194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032112

RESUMO

Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.


Assuntos
Modelos Animais de Doenças , Hepatopatias , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Hepatócitos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Proteínas Nucleares/genética , Suínos , Porco Miniatura
6.
Mol Genet Metab Rep ; 32: 100892, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35800472

RESUMO

Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disorder caused by a defect in fumarylacetoacetate hydroxylase (FAH) encoded by the FAH gene. Patients with HT1 disorder present with increased blood tyrosine, succinyl acetoacetate, and succinyl acetone levels, and develop clinical manifestations including liver failure, kidney tubular dysfunction, growth failure, rickets, pseudo-porphyric crises, and hepatocellular carcinoma. We encountered two siblings with HT1. Among the siblings, the elder brother developed acute liver failure with coagulopathy at the age of 2 months and was rescued by liver transplantation (LT) following combination therapy with continuous hemodiafiltration and plasma exchange. The younger sister was followed up from the prenatal period for signs of HT1 due to prior history of the condition in her sibling. She was initially considered a carrier of HT1 owing to the lack of overt signs of the disease and negative urine screening for succinyl acetone (SA). She was eventually diagnosed with HT1 because of liver disorder at 9 months of age, associated with a positive urine SA result. Her disease state was controlled by treatment with nitisinone (NTBC). DNA analysis of both siblings identified heterozygous status for a previously reported FAH pathogenic allele (c.782C > T) and a novel likely pathogenic variant (c.688C.G). The siblings have stable lives with no developmental delay or impaired growth. NTBC treatment is effective in preventing the progression of liver and kidney diseases. However, even in cases treated without LT, clinicians should follow up the clinical outcomes over long term, as patients may require LT when developing complications, such as hepatocellular carcinoma.

7.
BMC Biol ; 20(1): 74, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361222

RESUMO

BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice.


Assuntos
Mutação com Ganho de Função , Edição de Genes , Animais , Fígado/metabolismo , Camundongos , Fenótipo , Tecnologia
8.
JHEP Rep ; 4(4): 100416, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35243280

RESUMO

Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.

9.
Mol Genet Metab Rep ; 30: 100836, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242570

RESUMO

Tyrosinemia type 1 (HT1) is an inborn error of tyrosine catabolism that leads to severe liver, kidney, and neurological dysfunction. Newborn screening (NBS) can enable a timely diagnosis and early initiation of treatment. We presented the follow up of the only two Slovenian patients diagnosed with HT1. Metabolic control was monitored by measuring tyrosine, phenylalanine and succinylacetone from dried blood spots (DBSs). Retrograde screening of HT1 was performed from DBSs taken at birth using tandem mass spectrometry. First patient was diagnosed at the age of 6 months in the asymptomatic phase due to an abnormal liver echogenicity, the other presented at 2.5 months with an acute liver failure and needed a liver transplantation. The first was a compound heterozygote for a novel FAH intronic variant c.607-21A>G and c.192G>T whereas the second was homozygous for c.192G>T. At the non-transplanted patient, 66% of tyrosine and 79% of phenylalanine measurements were in strict reference ranges of 200-400 µmol/L and >30 µmol/L, respectively, which resulted in a favorable cognitive outcome at 3.6 years. On retrograde screening, both patients had elevated SA levels; on the other hand, tyrosine was elevated only at one. We showed that non-coding regions should be analyzed when clinical and biochemical markers are characteristic of HT1. DBSs represent a convenient sample type for frequent amino acid monitoring. Retrograde diagnosis of HT1 was possible after more than three years of birth with SA as a primary marker, complemented by tyrosine.

10.
Cancer Med ; 11(3): 602-617, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951132

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) patient-derived xenograft (PDX) models hold potential to advance knowledge in HCC biology to help improve systemic therapies. Beside hepatitis B virus-associated tumors, HCC is poorly established in PDX. METHODS: PDX formation from fresh HCC biopsies were obtained and implanted intrahepatically or in subrenal capsule (SRC). Mouse liver injury was induced in immunodeficient Fah-/-  mice through cycling off nitisinone after HCC biopsy implantation, versus continuous nitisinone as non-liver injury controls. Mice with macroscopically detectable PDX showed rising human alpha1-antitrypsin (hAAT) serum levels, and conversely, no PDX was observed in mice with undetectable hAAT. RESULTS: Using rising hAAT as a marker for PDX formation, 20 PDX were established out of 45 HCC biopsy specimens (44%) reflecting the four major HCC etiologies most commonly identified at Memorial SloanKettering similar to many other institutions in the United States. PDX was established only in severely immunodeficient mice lacking lymphocytes and NK cells. Implantation under the renal capsule improved PDX formation two-fold compared to intrahepatic implantation. Two out of 18 biopsies required murine liver injury to establish PDX, one associated with hepatitis C virus and one with alcoholic liver disease. PDX tumors were histologically comparable to biopsy specimens and 75% of PDX lines could be passaged. CONCLUSIONS: Using cycling off nitisinone-induced liver injury, HCC biopsies implanted under the renal capsule of severely immunodeficient mice formed PDX with 57% efficiency as determined by rising hAAT levels. These findings facilitate a more efficient make-up of PDX for research into subset-specific HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Biópsia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Estados Unidos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Mol Gastroenterol Hepatol ; 13(2): 565-582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34756982

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is a frequent cause of hepatic dysfunction and is now a global epidemic. This ailment can progress to an advanced form called nonalcoholic steatohepatitis (NASH) and end-stage liver disease. Currently, the molecular basis of NASH pathogenesis is poorly understood, and no effective therapies exist to treat NASH. These shortcomings are due to the paucity of experimental NASH models directly relevant to humans. METHODS: We used chimeric mice with humanized liver to investigate nonalcoholic fatty liver disease in a relevant model. We carried out histologic, biochemical, and molecular approaches including RNA-Seq. For comparison, we used side-by-side human NASH samples. RESULTS: Herein, we describe a "humanized" model of NASH using transplantation of human hepatocytes into fumarylacetoacetate hydrolase-deficient mice. Once fed a high-fat diet, these mice develop NAFLD faithfully, recapitulating human NASH at the histologic, cellular, biochemical, and molecular levels. Our RNA-Seq analyses uncovered that a variety of important signaling pathways that govern liver homeostasis are profoundly deregulated in both humanized and human NASH livers. Notably, we made the novel discovery that hepatocyte growth factor (HGF) function is compromised in human and humanized NASH at several levels including a significant increase in the expression of the HGF antagonists known as NK1/NK2 and marked decrease in HGF activator. Based on these observations, we generated a potent, human-specific, and stable agonist of human MET that we have named META4 (Metaphor) and used it in the humanized NASH model to restore HGF function. CONCLUSIONS: Our studies revealed that the humanized NASH model recapitulates human NASH and uncovered that HGF-MET function is impaired in this disease. We show that restoring HGF-MET function by META4 therapy ameliorates NASH and reinstates normal liver function in the humanized NASH model. Our results show that the HGF-MET signaling pathway is a dominant regulator of hepatic homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Hepatócitos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia
12.
JHEP Rep ; 3(3): 100281, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036256

RESUMO

BACKGROUND & AIMS: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease (NAFLD), which affects a quarter of the world's population and is associated with hepatitis, cirrhosis, and hepatocellular carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model. METHODS: We generated TIRF (transgene-free Il2rg -/-/Rag2 -/-/Fah -/-) mice, populated their livers with human hepatocytes, and fed them a Western-type diet for 12 weeks. RESULTS: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD with respect to transcriptional control of cholesterol biosynthesis. CONCLUSIONS: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis. LAY SUMMARY: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data. The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel humanised mouse system can be used to study human fatty liver disease.

13.
Stem Cell Res ; 53: 102331, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33882394

RESUMO

Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient diagnosed as hereditary tyrosinemia type I (HT1) caused by FAH gene mutation. Induced pluripotent stem cells (iPSCs) were developed using non-integrating episomal vectors containing OCT4, SOX2, KLF4, BCL-XL and MYC. The established iPSC line (SDQLCHi026-A) displayed pluripotent cell morphology, high expression levels of pluripotency markers, differentiation potential in vitro, normal karyotype, and remaining the original FAH gene mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tirosinemias , Diferenciação Celular , Reprogramação Celular , Heterozigoto , Humanos , Fator 4 Semelhante a Kruppel , Mutação , Tirosinemias/genética
14.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804275

RESUMO

Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Dormência de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Humanos , Longevidade/genética , Oxirredução , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
JHEP Rep ; 3(2): 100223, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33604532

RESUMO

BACKGROUND & AIMS: Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis. METHODS: A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1). RESULTS: Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (T r p53) inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis. CONCLUSIONS: These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the WNT/CTNNB1 signalling pathway in HCC tumourigenesis. LAY SUMMARY: ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading to tumourigenesis.

16.
Metabol Open ; 9: 100083, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33598652

RESUMO

BACKGROUND: Tyrosinemia type 1 (hepatorenal tyrosinemia, HT1) is a rare autosomal recessive inborn error of tyrosine metabolism caused by deficiency of the last enzyme in the tyrosine catabolic pathway, fumarylacetoacetate hydrolase (FAH) leading to severe hepatic, renal and peripheral nerve damage if left untreated. Early treatment may prevent acute liver failure, renal dysfunction, liver cirrhosis, hepatocellular carcinoma (HCC) and improves survival. MATERIAL AND METHODS: A retrospective single center study was carried out based on the clinical and biochemical presentation, therapy and outcome of 25 Palestinian patients with HT1 diagnosed during the last 25 years. RESULTS: HT1 is not included in newborn screening program in Palestine. The mean age at diagnosis was 8 months and the main clinical manifestations were coagulopathy, hepatomegaly, splenomegaly and renal tubular dysfunction. The main biochemical abnormalities were elevated plasma tyrosine, serum transaminases and prothrombin time, and low serum phosphorous with elevated alkaline phosphatase compatible with hypophosphatemic rickets secondary to renal tubular dysfunction. All patients were treated with nitisinone. The mean duration of nitisinone treatment was 74 months and the mean dosage was 0.89 mg/kg/day. None developed HCC or neurological crisis. CONCLUSIONS: Most patients present with liver failure and renal tubular dysfunction. Nitisinone treatment was effective therapy in all patients and improved both short- and long-term prognosis of HT1. Renal tubular dysfunction improved in all patients within the first week of starting nitisinone. Early diagnosis is necessary because delay in the treatment increases the risk of progressive liver failure HCC, progressive renal disease and neuropathy.

17.
Environ Sci Pollut Res Int ; 28(9): 10889-10897, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33105007

RESUMO

Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources. In-stream attenuation of photo- and non-photodegradable DBPs during river transportation is currently not well understood. Here we sought to fill this knowledge gap by meta-data-analysis for modeling in-stream attenuation of DBPs. Data were collected along a treated-wastewater-dominated 1.6-km stretch of a river channel for 3 years and incorporated seasonal and diurnal patterns. Photo-irradiation and water temperature were the main factors responsible for in-stream attenuation of photodegradable N-nitrosodimethylamine (NDMA), and water temperature for that of non-photodegradable formaldehyde (FAH). The factors were incorporated into photo-dependent and -independent models to account for temporal variations in NDMA and FAH, respectively. Estimated mass recoveries of NDMA and FAH agreed well with observed values along the stretch. The models developed here offer a novel and useful tool for estimating levels of NDMA and FAH during river transportation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Formaldeído , Rios , Estações do Ano , Poluentes Químicos da Água/análise
18.
Front Med (Lausanne) ; 7: 542905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195293

RESUMO

Purposes: This study was intended to summarize the characteristics and clinical outcome of Liver and Pancreas (LPTx) recipients in the Scientific Registry of Transplant Recipients (SRTR) database vs. the largest series from the First Affiliated Hospital (FAH), Sun Yat-sen University. Methods: The clinical data of 23 patients who underwent LPTx from 2000 to 2016 in the United States and 31 patients who underwent modified LPTx procedure (known as simplified multivisceral transplantation [SMT]) from 2008 to 2017 in our center were reviewed. The indications, surgical techniques, patient and graft survival, and complications were compared between the two groups. Results: All recipients in the FAH group were diagnosed with type 2 diabetes mellitus, while 10 of 23 recipients were diagnosed with type 1 diabetes mellitus in the SRTR group. The 1-, 3-, and 5-year cumulative patient survival rates were 81, 74, and 74% in the FAH group, respectively, and 51, 47, and 37% in the SRTR group, respectively (P = 0.023). No diabetes was observed during follow-up in the FAH group, while the diabetes recurrence rate was 22.2% in the SRTR group (P = 0.03). Conclusion: With multiple techniques modified and indications changed, the SMT procedure yielded a preferable outcome compared to that of the traditional LPTx procedure in records of SRTR. SMT has become a treatment option for patients with end-stage liver disease and concurrent diabetes.

19.
JAAD Case Rep ; 6(10): 1042-1044, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32995441
20.
JACC Basic Transl Sci ; 5(6): 549-557, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613143

RESUMO

Lipoprotein(a) (Lp[a]) is the most common genetically inherited risk factor for cardiovascular disease. Many aspects of Lp(a) metabolism remain unknown. We assessed the uptake of fluorescent Lp(a) in primary human lymphocytes as well as Lp(a) hepatic capture in a mouse model in which endogenous hepatocytes have been ablated and replaced with human ones. Modulation of LDLR expression with the PCSK9 inhibitor alirocumab did not alter the cellular or the hepatic uptake of Lp(a), demonstrating that the LDL receptor is not a major route for Lp(a) plasma clearance. These results have clinical implications because they underpin why statins are not efficient at reducing Lp(a).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...