Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732692

RESUMO

This research work is based on a previous study by the authors that characterized the behavior of FBG sensors with a polyimide coating in a structural monitoring system. Sensors applied to structural health monitoring are affected by the presence of simultaneous multidirectional strains. The previous study observed the influence of the transverse strain (εy) while keeping the longitudinal strain constant (εx), where the x direction is the direction of the optical fiber. The present study develops an experimental methodology consisting of a biaxial test plan on cruciform specimens with three embedded FBG sensors coated with polyimide, acrylate, and ORMOCER®. Applying the Strain-Optic Theory as a reference, a comparison of the experimental values obtained with the different coatings was studied. This experimental work made it possible to study the influence of the transverse strain (εy) on the longitudinal measurements of each FBGS and the influence of the coating material. Finally, the calibration procedure was defined as well as K (strain sensitivity factor) for each sensor.

2.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257715

RESUMO

Accurately mapping the temperature during ablation is crucial for improving clinical outcomes. While various sensor configurations have been suggested in the literature, depending on the sensors' type, number, and size, a comprehensive understanding of optimizing these parameters for precise temperature reconstruction is still lacking. This study addresses this gap by introducing a tool based on a theoretical model to optimize the placement of fiber Bragg grating sensors (FBG) within the organ undergoing ablation. The theoretical model serves as a general framework, allowing for adaptation to various situations. In practical application, the model provides a foundational structure, with the flexibility to tailor specific optimal solutions by adjusting problem-specific data. We propose a nonlinear and nonconvex (and, thus, only solvable in an approximated manner) optimization formulation to determine the optimal distribution and three-dimensional placement of FBG arrays. The optimization aims to find a trade-off among two objectives: maximizing the variance of the expected temperatures measured by the sensors, which can be obtained from a predictive simulation that considers both the type of applicator used and the specific organ involved, and maximizing the squared sum of the distances between the sensor pairs. The proposed approach provides a trade-off between collecting diverse temperatures and not having all the sensors concentrated in a single area. We address the optimization problem through the utilization of approximation schemes in programming. We then substantiate the efficacy of this approach through simulations. This study tackles optimizing the FBGs' sensor placement for precise temperature monitoring during tumor ablation. Optimizing the FBG placement enhances temperature mapping, aiding in tumor cell eradication while minimizing damage to surrounding tissues.

3.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433413

RESUMO

Strain sensing technology using fibre Bragg grating (FBG) sensors is an attractive capability for aerospace structural health monitoring (SHM) and assessment because they offer resistance to harsh environments, low maintenance, and potential for high density and high strain sensing. The development of FBG inscription techniques through the fibre polymer coating using infrared (IR) lasers has overcome the mechanical weaknesses introduced by removal of the fibre coating, which is typically required for conventional UV laser inscription of FBGs. Type I and Type II femtosecond gratings are fabricated using through-coating inscription techniques, but the higher laser energy used for Type II gratings damages the glass fibre core, impacting mechanical performance. This paper investigates the fatigue performance of Type I and Type II through-coating FBG sensors with different fibre geometries and photosensitisation approaches to evaluate their overall reliability and durability, with a view to assess their performance for potential use in civil and defence SHM applications. The fatigue performance of FBG sensors was assessed under high-strain and high-frequency mechanical loading conditions by using a custom-designed electro-dynamically actuated loading assembly. In addition, pre- and post-fatigue microscopic analyses and high-resolution reflection spectrum characterisation were conducted to investigate the failure regions of the fibres and the effect of fatigue loading on reflection spectrum features. As expected, Type I gratings had a significantly higher fatigue life compared to Type II gratings. However, Type II gratings performed significantly better than conventional UV laser-inscribed FBGs and electrical foil strain gauges. Type II gratings withstand higher temperatures, and are therefore more suitable for application in harsh environments.

4.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957279

RESUMO

High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interference, remote detection, multiplexing, and distributed measurement advantages. This paper reviews the sensing principle, structural design, and temperature measurement performance of fiber-optic high-temperature sensors, as well as recent significant progress in the transition of sensing solutions from glass to crystal fiber. Finally, future prospects and challenges in developing fiber-optic high-temperature sensors are also discussed.

5.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746351

RESUMO

A data-driven-based methodology for SHM in reinforced concrete structures using embedded fiber optic sensors and pattern recognition techniques is presented. A prototype of a reinforced concrete structure was built and instrumented in a novel fashion with FBGs bonded directly to the reinforcing steel bars, which, in turn, were embedded into the concrete structure. The structure was dynamically loaded using a shaker. Superficial positive damages were induced using bonded thin steel plates. Data for pristine and damaged states were acquired. Classifiers based on Mahalanobis' distance of the covariance data matrix were developed for both supervised and unsupervised pattern recognition with an accuracy of up to 98%. It was demonstrated that the proposed sensing scheme in conjunction with the developed supervised and unsupervised pattern recognition techniques allows the detection of slight stiffness changes promoted by damages, even when strains are very small and the changes of these associated with the damage occurrence may seem negligible.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodos , Aço
6.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960466

RESUMO

This work presents an extensive, comparative study of the gamma and electron radiation effects on the behaviour of femtosecond laser-inscribed fibre Bragg gratings (FBGs) using the point-by-point and plane-by-plane inscription methods. The FBGs were inscribed in standard telecommunication single mode silica fibre (SMF28) and exposed to a total accumulated radiation dose of 15 kGy for both gamma and electron radiation. The gratings' spectra were measured and analysed before and after the exposure to radiation, with complementary material characterisation using Fourier transform infrared (FTIR) spectroscopy. Changes in the response of the FBGs' temperature coefficients were analysed on exposure to the different types of radiation, and we consider which of the two inscription methods result in gratings that are more robust in such harsh environments. Moreover, we used the FTIR spectroscopy to locate which chemical bonds are responsible for the changes on temperature coefficients and which are related with the optical characteristics of the FBGs.


Assuntos
Lasers
7.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577259

RESUMO

Icing is a hazard which is important for the aerospace industry and which has grown over the last few years. Developing sensors that can detect the existence not only of standard icing conditions with typically small droplet size, but also of Supercooled Large Droplet (SLD) conditions is one of the most important aims in order to minimize icing hazards in the near future. In the present paper a study of the Fiber Bragg Grating Sensors' (FBGSs) performance as a flight icing detection system that predicts the conditions of an icing cloud is carried out. The test matrix was performed in the INTA Icing Wind Tunnel (IWT) with several icing conditions including SLD. Two optic fibers with 16 FBGS in total were integrated in the lower and upper surface of an airfoil to measure the temperature all over the chord. The results are compared with a Messinger heat and mass balance model and the measurements of the FBGS are used to predict the Liquid Water Content (LWC) and Ice Accretion Rate (IAR). Finally, the results are evaluated and a sensor assessment is made. A good correlation was observed between theoretical calculations and test results obtained with the FBGS in the IWT tests. FBGS proved to detect the beginning and end of ice accretion, LWC and IAR quickly and with good precision.

8.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114180

RESUMO

Grasping is one of the first dominant motor behaviors that enable interaction of a newborn infant with its surroundings. Although atypical grasping patterns are considered predictive of neuromotor disorders and injuries, their clinical assessment suffers from examiner subjectivity, and the neuropathophysiology is poorly understood. Therefore, the combination of technology with functional magnetic resonance imaging (fMRI) may help to precisely map the brain activity associated with grasping and thus provide important insights into how functional outcomes can be improved following cerebral injury. This work introduces an MR-compatible device (i.e., smart graspable device (SGD)) for detecting grasping actions in newborn infants. Electromagnetic interference immunity (EMI) is achieved using a fiber Bragg grating sensor. Its biocompatibility and absence of electrical signals propagating through the fiber make the safety profile of the SGD particularly favorable for use with fragile infants. Firstly, the SGD design, fabrication, and metrological characterization are described, followed by preliminary assessments on a preterm newborn infant and an adult during an fMRI experiment. The results demonstrate that the combination of the SGD and fMRI can safely and precisely identify the brain activity associated with grasping behavior, which may enable early diagnosis of motor impairment and help guide tailored rehabilitation programs.


Assuntos
Força da Mão , Imageamento por Ressonância Magnética , Adulto , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Materiais Inteligentes
9.
Sensors (Basel) ; 20(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224915

RESUMO

Icing detection of composite insulators is essential for the security and stability of power grids. As conventional methods have met difficulties in harsh weather, a 110 kV composite insulator with embedded Fiber Bragg Gratings (FBGs) was proposed for detecting glaze icing in this paper. FBG temperature compensation sensors in ceramic tubes were adopted for simultaneous measurement of icicle loads and temperature. Then, temperature calibration experiments and simulated icicle load experiments were carried out to obtain temperature and icicle load characteristics of FBGs. The results showed that temperature sensitivities of FBG strain sensors and FBG temperature compensation sensors were 18.16 pm/°C, and 13.18 pm/°C, respectively. Besides, wavelength shifts were linearly related to icicle loads within the polar angle range of -60° to 60°, and the load coefficient of FBG facing the icicle was -34.6 pm/N. In addition, the wavelength shift generated by several icicles was equal to the sum of wavelength shifts generated by each icicle within the polar angle range of -15° to 15°. Finally, icicles can cause wavelength shifts of FBGs within a big shed spacing. The paper provides a novel icing detection technology for composite insulators in transmission lines.

10.
Sensors (Basel) ; 20(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019146

RESUMO

Femtosecond (fs) laser written fiber Bragg gratings (FBGs) are excellent candidates for ultra-high temperature (>800 ºC) monitoring. More specifically, Type II modifications in silicate glass fibers, characterized by the formation of self-organized birefringent nanostructures, are known to exhibit remarkable thermal stability around 1000 ºC for several hours. However, to date there is no clear understanding on how both laser writing parameters and glass composition impact the overall thermal stability of these fiber-based sensors. In this context, this work investigates thermal stability of Type II modifications in various conventional glass systems (including pure silica glasses with various Cl and OH contents, GeO2-SiO2 binary glasses, TiO2- and B2O3-doped commercial glasses) and with varying laser parameters (writing speed, pulse energy). In order to monitor thermal stability, isochronal annealing experiments (Δt⁓ 30 min, ΔT⁓ 50 ºC) up to 1400 ºC were performed on the irradiated samples, along with quantitative retardance measurements. Among the findings to highlight, it was established that ppm levels of Cl and OH can drastically reduce thermal stability (by about 200 ºC in this study). Moreover, GeO2 doping up to 17 mole% only has a limited impact on thermal stability. Finally, the relationships between glass viscosity, dopants/impurities, and thermal stability, are discussed.

11.
Osteoarthr Cartil Open ; 2(4): 100109, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474890

RESUMO

Objective: There is a high risk of developing osteoarthritis (OA) following traumatic injury to the knee. Severe ligament injuries can disrupt the integrity of the multicomponent knee at both biological and biomechanical levels. We hypothesize changes in cartilages stresses could lead to tissue damage and development of OA. Design: The in-vivo gait kinematics of the stifle (knee) joint of four adult female ovine subjects were recorded prior to and at ten-and-twenty weeks following partial ACL-MCL transection. The subjects were sacrificed and the experimental joint from each subject was mounted on a parallel robotic system programmed with the kinematic findings. Ten custom-built Fibre Bragg Grating optic sensors were arranged to measure contact stresses on the surface of the tibial plateau articular cartilage. These sensors provide the first accurate stress measurements in a joint during gait replication using the previously recorded in-vivo kinematics. The relationship between the results obtained and observed focal damage was assessed. Results: The locations on the tibial plateaus that experienced the greatest change in contact stresses corresponded with the locations of focal damage development. No direct link was detected between individual animal differences in kinematics and variations in stress magnitudes or the development of focal cartilage damage. Conclusions: The findings highlight the importance of mechanical stress determinants in the integrated set point for the knee (with individual variation), and how injury-related stress changes correlate with development of PTOA.

12.
Sensors (Basel) ; 19(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408984

RESUMO

Although fibre Bragg gratings (FBGs) offer obvious potential for use in high-density, high-strain sensing applications, the adoption of this technology in the historically conservative aerospace industry has been slow. There are several contributing factors, one of which is variability in the reported performance of these sensors in harsh and fatigue prone environments. This paper reports on a comparative evaluation of the fatigue performance of FBG sensors written according to the same specifications using three different grating manufacturing processes: sensors written in stripped and re-coated fibres, sensors written during the fibre draw process and sensors written through fibre coating. Fatigue cycling of the fibres is provided by a customized electro-dynamically actuated loading assembly designed to provide high frequency and amplitude loading. Pre- and post-fatigue microscopic analysis and high-resolution transmission and reflection spectra scanning are conducted to investigate the fatigue performance of FBGs, the failure regions of fibres as well as any fatigue-related effects on the spectral profiles. It was found that because of the unique fabrication method, the sensors written through the fibre coating, also known as trans-jacket FBGs, show better fatigue performance than stripped and re-coated FBGs with greater control possible to tailor the optical reflection properties compared to gratings written in the draw tower. This emerging method for inscription of Type I gratings opens up the potential for mass production of higher reflectivity, apodised sensors with dense or complex array architectures which can be adopted as sensors for harsh environments such as in defence and aerospace industries.

13.
Comput Methods Programs Biomed ; 177: 31-38, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31319958

RESUMO

BACKGROUND AND OBJECTIVE: Monitoring of changes in respiratory rate provides information on a patient's psychophysical state. This paper presents a respiratory rate detection method based on analysis of signals from a fiber Bragg grating (FBG)-based sensor. METHODS: The detection method is based on a system of software blocks that identify notches in the signal waveforms, determine their parameters, and then transmit them to the classifier, which decides which of them are the characteristic waves of the respiratory cycle. The classifier of respiratory waves was developed by means of machine learning methods and using the training data obtained from 10 volunteers (7 males, 3 females, age: 41.1 ±â€¯8.28 years, weight: 73.6 ±â€¯15.25 kg, height 173.5 ±â€¯6.43 cm), who were lying in the tube of a 3-Tesla magnetic resonance imaging (MRI) scanner. RESULTS: In the verification study, aimed at assessing the performance of the method for detecting respiratory rate, 15 subjects (14 males, 1 female, age: 20.2 ±â€¯3.00 years, weight: 75.47 ± 10.58 kg, height 179.13 ± 6.27 cm) were involved. Clinically satisfactory results of respiratory rate detection were obtained: root mean square error of 1.48 rpm and the limits of agreement at -2.73 rpm and 3.04 rpm. The results indicate a high efficiency of the classifier, i.e., sensitivity: 96.50 ± 3.44%, precision: 95.42 ± 2.84%, and accuracy: 92.99 ± 3.37%. CONCLUSION: The all-dielectric sensor acquires the respiration curve and the proposed scheme of computation enables for extracting respiratory rate automatically and continuously. This scheme based on machine learning procedures will be integrated into a system to facilitate non-invasive continuous monitoring of MRI patients.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Monitorização Fisiológica/métodos , Taxa Respiratória , Adulto , Algoritmos , Análise Discriminante , Processamento Eletrônico de Dados , Desenho de Equipamento , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
14.
IEEE Sens J ; 18(12): 4961-4968, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30555284

RESUMO

Each year 35,000 cardiac ablation procedures are performed to treat atrial fibrillation through the use of catheter systems. The success rate of this treatment is highly dependent on the force which the catheter applies on the heart wall. If the magnitude of the applied force is much higher than a certain threshold the tissue perforates, whereas if the force is lower than this threshold the lesion size may be too large and is inconsistent. Furthermore, studies have shown large variability in the applied force from trained physicians during treatment, suggesting that physicians are unable to manually regulate the levels of the force at the site of treatment. Current catheter systems do not provide the physicians with active means for contact force control and are only at most aided by visual feedback of the forces measured in situ. This paper discusses a novel design of a robotic end-effector that integrates mechanisms of sensing and actively controlling of the applied forces into a miniaturized compact form. The required specifications for design and integration were derived from the current application under investigation. An off-the-shelf miniature piezoelectric motor was chosen for actuation, and a force sensing solution was developed to meet the specifications. Experimental characterization of the actuator and the force sensor within the integrated setup show compliance with the specifications and pave the way for future experimentation where closed-loop control of the system can be implemented according to the contact force control strategies for the application.

15.
Sensors (Basel) ; 19(1)2018 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-30583607

RESUMO

The safety monitoring and tracking of aircraft is becoming more and more important. Under aerodynamic loading, the aircraft wing will produce large bending and torsional deformation, which seriously affects the safety of aircraft. The variation of load on the aircraft wing directly affects the ground observation performance of the aircraft baseline. To compensate for baseline deformations caused by wing deformations, it is necessary to accurately obtain the deformation of the wing shape. The traditional aircraft wing shape measurement methods cannot meet the requirements of small size, light weight, low cost, anti-electromagnetic interference, and adapting to complex environment at the same time, the fiber optic sensing technology for aircraft wing shape measurement has been gradually proved to be a real time and online dynamic measurement method with many excellent characteristics. The principle technical characteristics and bonding technology of fiber Bragg grating sensors (FBGs) are reviewed in this paper. The advantages and disadvantages of other measurement methods are compared and analyzed and the application status of FBG sensing technology for aircraft wing shape measurement is emphatically analyzed. Finally, comprehensive suggestions for improving the accuracy of aircraft wing shape measurement based on FBG sensing technology is put forward.

16.
Sensors (Basel) ; 18(9)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181441

RESUMO

To detect perimeter intrusion accurately and quickly, a stream computing technology was used to improve real-time data processing in perimeter intrusion detection systems. Based on the traditional density-based spatial clustering of applications with noise (T-DBSCAN) algorithm, which depends on manual adjustments of neighborhood parameters, an adaptive parameters DBSCAN (AP-DBSCAN) method that can achieve unsupervised calculations was proposed. The proposed AP-DBSCAN method was implemented on a Spark Streaming platform to deal with the problems of data stream collection and real-time analysis, as well as judging and identifying the different types of intrusion. A number of sensing and processing experiments were finished and the experimental data indicated that the proposed AP-DBSCAN method on the Spark Streaming platform exhibited a fine calibration capacity for the adaptive parameters and the same accuracy as the T-DBSCAN method without the artificial setting of neighborhood parameters, in addition to achieving good performances in the perimeter intrusion detection systems.

17.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632172

RESUMO

This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

18.
Sensors (Basel) ; 12(4): 3929-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666011

RESUMO

This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.

19.
Sensors (Basel) ; 11(9): 8711-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164101

RESUMO

We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6-8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.


Assuntos
Sistemas de Informação Geográfica , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...