Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
Theriogenology ; 229: 66-74, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39163804

RESUMO

Fertilization capacity and embryo survival rate are decreased in postovulatory aging oocytes, which results in a reduced reproductive rate in female animals. However, the key regulatory genes and related regulatory mechanisms involved in the process of postovulatory aging in oocytes remain unclear. In this study, RNA-Seq revealed that 3237 genes were differentially expressed in porcine oocytes between the MII and aging stages (MII + 24 h). The expression level of FOXM1 was increased at the aging stage, and FOXM1 was also observed to be enriched in many key biological processes, such as cell senescence, response to oxidative stress, and transcription, during porcine oocyte aging. Previous studies have shown that FOXM1 is involved in the regulation of various biological processes, such as oxidative stress, DNA damage repair, mitochondrial function, and cellular senescence, which suggests that FOXM1 may play a crucial role in the process of postovulatory aging. Therefore, in this study, we investigated the effects and mechanisms of FOXM1 on oxidative stress, mitochondrial function, DNA damage, and apoptosis during oocyte aging. Our study revealed that aging oocytes exhibited significantly increased ROS levels and significantly decreased GSH, SOD, T-AOC, and CAT levels than did oocytes at the MII stage and that FOXM1 inhibition exacerbated the changes in these levels in aging oocytes. In addition, FOXM1 inhibition increased the levels of DNA damage, apoptosis, and cell senescence in aging oocytes. A p21 inhibitor alleviated the effects of FOXM1 inhibition on oxidative stress, mitochondrial function, and DNA damage and thus alleviated the degree of senescence in aging oocytes. These results indicate that FOXM1 plays a crucial role in porcine oocyte aging. This study contributes to the understanding of the function and mechanism of FOXM1 during porcine oocyte aging and provides a theoretical basis for preventing oocyte aging and optimizing conditions for the in vitro culture of oocytes.

2.
Heliyon ; 10(16): e35940, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39211916

RESUMO

Objective: The senescence process is pivotal in both the onset and advancement of lung adenocarcinoma (LUAD), influencing cell growth, immune evasion, the potential for metastasis, and resistance to treatments. Senescent cells' dual nature, both harmful and advantageous, adds complexity to understanding their expression patterns and clinical relevance in LUAD. In this study, we sought to evaluate the predictive value of the senescence-related signature in survival outcomes and immunotherapy efficacy in patients with LUAD. Materials and methods: We integrated data from 1449 LUAD cases sourced from different publicly accessible datasets and a clinical cohort of Chinese LUAD patients. The Cox regression analysis employing the least absolute shrinkage and selection operator (LASSO) was performed on 156 senescence-associated genes to develop the senescence-related signature. Kaplan-Meier analysis and time-dependent receiver operating characteristic curves were utilizaed to assess the prognostic significance of the senescence-related signature. Functional annotation, immune infiltration analysis, and gene set variation analysis were applied to investigate the association of the senescence-related signature with anti-tumor immunity in LUAD. Immunotherapy cohorts of non-small cell lung cancer, urothelial carcinoma, skin cutaneous melanoma, and glioblastoma patients were included to assess the senescence-related signature in predicting immunotherapy efficacy. Results: The senescence-related signature, which encompasses seven senescence-related genes, namely, FOXM1, VDAC1, PPP3CA, MAPK13, PIK3CD, RRAS, and CCND3, was identified to have predictive significance across multiple LUAD cohorts and demonstrated a negative association with antitumor immunity and tumor-infiltrating neutrophils. Patients exhibiting low expression levels of the senescence-related signature responded more favorably to immune checkpoint inhibitors in various solid tumors, including LUAD. Inhibiting FOXM1 pharmacologically with thiostrepton produced tumor-suppressive effects and improved immunotherapy responses in a Lewis lung carcinoma mouse model. Conclusions: The senescence-related signature demonstrates potential in predicting patient prognosis and immunotherapy efficacy in LUAD.

3.
Transl Androl Urol ; 13(7): 1145-1163, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39100843

RESUMO

Background: Methyltransferase-like (METTL) plays an important role in various biological processes, but its role in prostate cancer (PCa) is still unclear. This study aimed to explore the mechanism by which methyltransferase-like 14 (METTL14) inhibits the physiological activity of PCa cells by increasing the N6-methyladenosine (m6A) modification of cyclin-dependent kinase 4 (CDK4). Methods: Clinical samples were collected for bioinformatics analysis. A PCa mouse model was constructed. Cell counting kit-8 (CCK-8), flow cytometry, colony formation assays, scratch assays, Transwell assays, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and western blotting were used to detect the corresponding indicators. Results: METTL14 was found to be beneficial to inhibit the proliferation, invasion, and migration of PCa cells. When the m6A RNA increased, the half-life of CDK4 mRNA decreased after oe-METTL14 (overexpression of METTL14). Overexpression of CDK4 reversed the effect of oe-METTL14. Coimmunoprecipitation experiments revealed there were interactions between CDK4 and forkhead box M1 (FOXM1). Transfection of si-CDK4 was similar to transfection of oe-METTL14. After transfection with oe-FOXM1, the invasion and migration ability of cells increased, and cell apoptosis decreased. After transfection with si-FOXM1 alone, autophagy related 7 (ATG7) expression was significantly downregulated, and autophagy levels were reduced. The overexpression of ATG7 reversed the effect of si-FOXM1. The tumor volume and weight of the oe-METTL14 group mice were significantly reduced, and tumor proliferation was decreased in comparison to untreated tumor-bearing mice. Conclusions: METTL14 inhibits the invasion and migration of PCa cells and induces cell apoptosis by inhibiting CDK4 stability and FOXM1/ATG7-mediated autophagy.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39086352

RESUMO

Osteosarcoma (OS) is a primary bone cancer mostly found in adolescents and elderly individuals. The treatment of OS is still largely dependent on traditional chemotherapy. However, the high incidence of drug resistance remains one of the greatest impediments to limiting improvements in OS treatment. Recent findings have indicated that the transcription factor FOXM1 plays an important role in various cancer-related events, especially drug resistance. However, the possible role of FOXM1 in the resistance of OS to methotrexate (MTX) remains to be explored. Here, we find that FOXM1, which confers resistance to MTX, is highly expressed in OS tissues and MTX-resistant cells. FOXM1 overexpression promotes MTX resistance by enhancing autophagy in an HMMR/ATG7-dependent manner. Importantly, silencing of FOXM1 or inhibiting autophagy reverses drug resistance. These findings demonstrate a new mechanism for FOXM1-induced MTX resistance and provide a promising target for improving OS chemotherapy outcomes.

5.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020302

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Neoplasias Pulmonares , RNA Longo não Codificante , Sirtuínas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Genes Dis ; 11(5): 101203, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022126

RESUMO

Transcriptional factor Forkhead box M1 (FOXM1) plays an important role in pancreatic ductal adenocarcinoma (PDAC) development and progression. The molecular mechanisms underlying its dysregulation remain unclear. We identified and functionally validated the microRNAs (miRNAs) that critically regulate FOXM1 expression in PDAC. The expression levels of miRNA-23a (miR-23a-3p and -5p) were altered in PDAC cell lines and their effects on FOXM1 signaling and cell proliferation and migration and tumorigenesis were examined in vitro and in vivo using mouse PDAC models. Compared with non-tumor pancreatic tissues, PDAC tissues and cell lines exhibited significantly reduced levels of miR-23a expression. Reduced miR-23a expression and concomitant increase in FOXM1 expression were also observed in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia, the major premalignant lesions of PDAC. Transgenic expression of miR-23a reduced the expression of FOXM1 and suppressed cell proliferation and migration in PDAC cells, whereas the inhibitors of miR-23a did the opposite. Loss or reduced levels of miR-23a increased the levels of FOXM1 expression, while increased expression of FOXM1 down-regulated miR-23a expression, suggesting that miR-23a and FOXM1 were mutual negative regulators of their expression in PDAC cells. Therefore, the miR-23a/FOXM1 signaling axis is important in PDAC initiation and progression and could serve as an interventional or therapeutic target for patients with early or late stages of PDAC.

7.
Biol Cell ; : e2400012, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963053

RESUMO

FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38980505

RESUMO

PURPOSE: Cancer treatments often become ineffective because of acquired drug resistance. To characterize changes in breast cancer cells accompanying development of resistance to inhibitors of the oncogenic transcription factor, FOXM1, we investigated the suppression of cell death pathways, especially ferroptosis, in FOXM1 inhibitor-resistant cells. We also explored whether ferroptosis activators can synergize with FOXM1 inhibitors and can overcome FOXM1 inhibitor resistance. METHODS: In estrogen receptor-positive and triple-negative breast cancer cells treated with FOXM1 inhibitor NB73 and ferroptosis activators dihydroartemisinin and JKE1674, alone and in combination, we measured suppression of cell viability, motility, and colony formation, and monitored changes in gene and protein pathway expressions and mitochondrial integrity. RESULTS: Growth suppression of breast cancer cells by FOXM1 inhibitors is accompanied by increased cell death and alterations in mitochondrial morphology and metabolic activity. Low doses of FOXM1 inhibitor strongly synergize with ferroptosis inducers to reduce cell viability, migration, colony formation, and expression of proliferation-related genes, and increase intracellular Fe+2 and lipid peroxidation, markers of ferroptosis. Acquired resistance to FOXM1 inhibition is associated with increased expression of cancer stem-cell markers and proteins that repress ferroptosis, enabling cell survival and drug resistance. Notably, resistant cells are still sensitive to growth suppression by low doses of ferroptosis activators, effectively overcoming the acquired resistance. CONCLUSION: Delineating changes in viability and cell death pathways that can overcome drug resistance should be helpful in determining approaches that might best prevent or reverse resistance to therapeutic targeting of FOXM1 and ultimately improve patient clinical outcomes.

9.
Histochem Cell Biol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039166

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is a metabolic enzyme that converts isocitrate to α-ketoglutarate in cells. However, research on IDH1 is more focused on the metabolite D-2-hydroxyglutarate than the cellular roles of the IDH1 protein. Metabolic enzymes can moonlight by participating in diverse cellular processes in cancer cells. This moonlighting function of the metabolic enzymes can contribute to changes in gene expression. It is unknown whether IDH1 associates with any transcription factor. We asked whether IDH1 coordinates with forkhead box protein M1 (FOXM1) in mitotic cells to regulate late genes expression. We found that depletion of IDH1 reduces canonical FOXM1-target expression in mitotic cells. Also, IDH1 binds to FOXM1 and a subset of MuvB proteins, Lin-9 and Lin-54, in mitotic cells. Based on these observations, we suggest that IDH1 coordinates with FOXM1 in mitotic cells to regulate late genes expression.

10.
J Transl Med ; 22(1): 639, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978058

RESUMO

BACKGROUND: Breast cancer is one of the most common malignant tumors in women. Cell division cycle associated 5 (CDCA5), a master regulator of sister chromatid cohesion, was reported to be upregulated in several types of cancer. Here, the function and regulation mechanism of CDCA5 in breast cancer were explored. METHODS: CDCA5 expression was identified through immunohistochemistry staining in breast cancer specimens. The correlation between CDCA5 expression with clinicopathological features and prognosis of breast cancer patients was analyzed using a tissue microarray. CDCA5 function in breast cancer was explored in CDCA5-overexpressed/knockdown cells and mice models. Co-IP, ChIP and dual-luciferase reporter assay assays were performed to clarify underlying molecular mechanisms. RESULTS: We found that CDCA5 was expressed at a higher level in breast cancer tissues and cell lines, and overexpression of CDCA5 was significantly associated with poor prognosis of patients with breast cancer. Moreover, CDCA5 knockdown significantly suppressed the proliferation and migration, while promoted apoptosis in vitro. Mechanistically, we revealed that CDCA5 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the forkhead box M1 (FOXM1) promoter. Furthermore, the data of in vitro and in vivo revealed that depletion of FOXM1 alleviated the effect of CDCA5 overexpression on breast cancer. Additionally, we revealed that the Wnt/ß-catenin signaling pathway was required for CDCA5 induced progression of breast cancer. CONCLUSIONS: We suggested that CDCA5 promoted progression of breast cancer via CDCA5/FOXM1/Wnt axis, CDCA5 might serve as a novel therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F1 , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Pessoa de Meia-Idade , Apoptose , Prognóstico , Camundongos Nus , Movimento Celular , Regiões Promotoras Genéticas/genética , Camundongos Endogâmicos BALB C , Camundongos , Técnicas de Silenciamento de Genes , Proteínas Adaptadoras de Transdução de Sinal
11.
Cell Biol Toxicol ; 40(1): 58, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060874

RESUMO

OBJECTIVE: Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy. METHODS: Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429. RESULTS: KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments. CONCLUSION: KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.


Assuntos
Carcinogênese , Proliferação de Células , Proteína Forkhead Box M1 , Glicólise , Mieloma Múltiplo , Proteínas de Ligação a RNA , Humanos , Glicólise/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Masculino , Feminino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Camundongos Nus , Camundongos Endogâmicos BALB C
12.
Cell Signal ; 121: 111285, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969192

RESUMO

TST has been mainly studied for its anti-tumor proliferation and antimicrobial effects, but not widely used in dermatological diseases. The mechanism of cellular damage by TST in response to H2O2-mediated oxidative stress was investigated in human skin immortalized keratinocytes (HaCaT) as an in vitro model. The findings reveal that TST treatment leads to increased oxidative stress in the cells by reducing levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). This effect is further supported by an upsurge in the expression of malondialdehyde (MDA, a pivotal marker of lipid peroxidation). Additionally, dysregulation of FoxM1 at both gene and protein levels corroborates its involvement TST associated effects. Analysis of ferroptosis-related genes confirms dysregulation following TST treatment in HaCaT cells. Furthermore, TST treatment exhibits effects on mitochondrial morphology and function, affirming its induction of apoptosis in the cells through heightened oxidative stress due to mitochondrial damage and dysregulation of mitochondrial membrane potential.


Assuntos
Ferroptose , Células HaCaT , Mitocôndrias , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Peróxido de Hidrogênio , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Glutationa/metabolismo
13.
Cell Biochem Biophys ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031247

RESUMO

Hepatocellular carcinoma (HCC) presents significant challenges in treatment and prognosis because of its aggressive nature and high metastatic potential. This study aims to investigate the role of the hexosamine biosynthesis pathway (HBP) and its association with HCC progression and prognosis. We identified SPP1 and FOXM1 as hub genes within the HBP pathway, showing their correlation with poor prognosis and late-stage progression. In addition, the analysis uncovered the complex participation of the HBP pathway in nutrients and oxygen reactions, PI3K-AKT signaling, AMPK activation, and angiogenesis regulation. The disruption of these pathways is pivotal in influencing the growth and progression of HCC. Targeting the HBP presents a promising therapeutic approach to modulate the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. In addition, FOXM1 was identified as the HBP pathway regulator, influencing cellular O-GlcNAcylation level and VEGF secretion, thereby promoting angiogenesis in HCC. Inhibition of O-GlcNAcylation significantly hindered angiogenesis, which is suggested as a potential avenue for therapeutic intervention. Our research demonstrates the practicality of using the HBP-related gene as a prognostic marker in liver cancer patients and suggests targeting FOXM1 as a novel avenue for personalized therapy.

14.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G284-G294, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953837

RESUMO

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).


Assuntos
Neoplasias Colorretais , Proteína Forkhead Box M1 , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HT29 , Células HCT116 , Glicólise , Regulação Neoplásica da Expressão Gênica , Efeito Warburg em Oncologia , Transdução de Sinais , Proliferação de Células , Reprogramação Celular/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprogramação Metabólica
15.
Cancer Sci ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004911

RESUMO

Forkhead box M1 (FOXM1) is a key regulator of mitosis and is identified as an oncogene involved in several kinds of human malignancies. However, how it induces carcinogenesis and related therapeutic approaches remains not fully understood. In this study, we aimed to identify a regulatory axis involving FOXM1 and its target gene DEP domain containing 1 (DEPDC1) and investigate their biological functions. FOXM1 bound to the promoter and transcriptionally induced DEPDC1 expression, in turn, DEPDC1 physically interacted with FOXM1, promoted its nuclear translocation, and reinforced its transcriptional activities. The FOXM1/DEPDC1 axis was indispensable for cancer cells, as evidenced by the fact that DEPDC1 rescued cell growth inhibition caused by FOXM1 knockdown, and silencing DEPDC1 efficiently attenuated tumor growth in a murine hepatocellular carcinoma model. Furthermore, strong positive associations between FOXM1/DEPDC1 axis and poor clinical outcome were observed in human hepatocellular carcinoma samples, further indicating their significance for hepatocarcinogenesis. Finally, we attempted to exploit immunotherapy approaches to target the FOXM1/DEPDC1 axis. Several HLA-A24:02-restricted T-cell epitopes targeting FOXM1 or DEPDC1 were identified through bioinformatic analysis. Then, T cell receptor (TCR)-engineered T cells targeting FOXM1262-270 or DEPDC1294-302 were successfully established and proved to efficiently eradicate tumor cells. Our findings highlight the significance of the FOXM1/DEPDC1 axis in the process of oncogenesis and indicate their potential as immunotherapy targets.

16.
Lab Invest ; 104(8): 102093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857782

RESUMO

Epithelioid sarcoma (ES) is a rare aggressive sarcoma that, unlike most soft-tissue sarcomas, shows a tendency toward local recurrence and lymph node metastasis. Novel antitumor agents are needed for ES patients. Forkhead box transcription factor 1 (FOXM1) is a member of the Forkhead transcription factor family and is associated with multiple oncogenic functions; FOXM1 is known to be overexpressed and correlated with pathogenesis in various malignancies. In this study, we immunohistochemically analyzed FOXM1 expression levels and their clinical, clinicopathologic, and prognostic significance in 38 ES specimens. In addition, to investigate potential correlations between FOXM1 downregulation and oncologic characteristics, we treated ES cell lines with thiostrepton, a naturally occurring antibiotic that inhibits both small interfering RNA (siRNA) and FOXM1. In the analyses using ES samples, all 38 specimens were diagnosed as positive for FOXM1 by immunohistochemistry. We separated specimens into high (n = 19) and low (n = 19) FOXM1-protein expression groups by staining index score, and into large (n = 12), small (n = 25), and unknown (n = 1) tumor-size groups using a cutoff of 5 cm maximum diameter. Although there were significantly more samples with high FOXM1 expression in the large tumor group (P = .013), there were no significant differences with respect to age (P = 1.00), sex (P = .51), primary site of origin (P = .74), histologic subtypes (P = 1.00), depth (P = .74), or survival rate (P = .288) between the high and low FOXM1-protein expression groups. In the in vitro experiments using ES cell lines, FOXM1 siRNA and thiostrepton successfully downregulated FOXM1 mRNA and protein expression. Furthermore, downregulation of FOXM1 inhibited cell proliferation, drug resistance against chemotherapeutic agents, migration, and invasion and caused cell cycle arrest in the ES cell lines. Finally, cDNA microarray analysis data showed that FOXM1 regulated cIAP2, which is one of the apoptosis inhibitors activated by the TNFα-mediated NF-κB pathway. In conclusion, the FOXM1 gene may be a promising therapeutic target for ES.


Assuntos
Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead , Sarcoma , Tioestreptona , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Sarcoma/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Tioestreptona/farmacologia , Feminino , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Idoso , RNA Interferente Pequeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Imuno-Histoquímica , Criança
17.
Cell Signal ; 121: 111259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871040

RESUMO

Recurrent miscarriage (RM) is a distressing pregnancy complication with an unknown etiology. Increasing evidence indicates the relevance of dysregulation of human trophoblast stem cells (hTSCs), which may play a role in the development of RM. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of hTSCs is yet to be fully elucidated. In this study, we performed data analysis and identified Forkhead box M1 (FOXM1) as a potential factor associated with RM. FOXM1 is a typical transcription factor known for its involvement in various pathophysiological processes, while the precise function of FOXM1 functions in hTSCs and RM remains incompletely understood. Utilizing RNA-seq, CUT&Tag, ChIP-qPCR, and sodium bisulfite conversion methods for methylation analysis, we elucidate the underlying regulatory mechanisms of FOXM1 in hTSCs and its implications in RM. Our findings demonstrate the relative high expression of FOXM1 in proliferating cytotrophoblasts (CTBs) compared to differentiated extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STBs). Besides, we provide evidence supporting a significant correlation between FOXM1 downregulation and the incidence of RM. Furthermore, we demonstrate the significant role of FOXM1 in regulating hTSCs proliferation and cell cycle through the transcriptional regulation of CDKN3, CCNB2, CCNA2, MAD2L1 and CDC25C. Notably, we observed a correlation between the downregulation of FOXM1 in RM and hypermethylation in its promoter region. Collectively, these results provide insights into the impact of FOXM1 on trophoblast regulation and offer a novel perspective on RM.


Assuntos
Aborto Habitual , Proliferação de Células , Metilação de DNA , Proteína Forkhead Box M1 , Células-Tronco , Trofoblastos , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Gravidez , Células-Tronco/metabolismo , Células-Tronco/citologia , Adulto , Regiões Promotoras Genéticas
18.
Cancer Lett ; 596: 217004, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838765

RESUMO

Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Proteínas de Ligação a RNA , Ribonucleoproteínas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Ferroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proliferação de Células , Animais , Camundongos , Retroalimentação Fisiológica , Progressão da Doença , Linhagem Celular Tumoral , Masculino , Movimento Celular/genética , Feminino , Camundongos Nus , Prognóstico , Adenosina/análogos & derivados , Serina Proteases
19.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934864

RESUMO

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Assuntos
Diferenciação Celular , Proteína Forkhead Box M1 , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Transdução de Sinais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
20.
Med Oncol ; 41(8): 188, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918225

RESUMO

FOXM1, a proto-oncogenic transcription factor, plays a critical role in cancer development and treatment resistance in cancers, particularly in breast cancer. Thus, this study aimed to identify potential FOXM1 inhibitors through computational screening of drug databases, followed by in vitro validation of their inhibitory activity against breast cancer cells. In silico studies involved pharmacophore modeling using the FOXM1 inhibitor, FDI-6, followed by virtual screening of DrugBank and Selleckchem databases. The selected drugs were prepared for molecular docking, and the crystal structure of FOXM1 was pre-processed for docking simulations. In vitro studies included MTT assays to assess cytotoxicity, and Western blot analysis to evaluate protein expression levels. Our study identified Pantoprazole and Rabeprazole as potential FOXM1 inhibitors through in silico screening and molecular docking. Molecular dynamics simulations confirmed stable interactions of these drugs with FOXM1. In vitro experiments showed both Pantoprazole and Rabeprazole exhibited strong FOXM1 inhibition at effective concentrations and that showed inhibition of cell proliferation. Rabeprazole showed the inhibitor activity at 10 µM in BT-20 and MCF-7 cell lines. Pantoprazole exhibited FOXM1 inhibition at 30 µM and in BT-20 cells and at 70 µM in MCF-7 cells, respectively. Our current study provides the first evidence that Rabeprazole and Pantoprazole can bind to FOXM1 and inhibit its activity and downstream signaling, including eEF2K and pEF2, in breast cancer cells. These findings indicate that rabeprazole and pantoprazole inhibit FOXM1 and breast cancer cell proliferation, and they can be used for FOXM1-targeted therapy in breast or other cancers driven by FOXM1.


Assuntos
Neoplasias da Mama , Proliferação de Células , Reposicionamento de Medicamentos , Proteína Forkhead Box M1 , Simulação de Acoplamento Molecular , Rabeprazol , Humanos , Proteína Forkhead Box M1/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Rabeprazol/farmacologia , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Pantoprazol/farmacologia , Linhagem Celular Tumoral , Piridinas , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...