Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; 19(37): e2301267, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144442

RESUMO

Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274 mV to reach 100 mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72 h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from ß to γ phase, thus keeping the Fe-doped NiOOH at the most active state.

2.
Eur J Pharm Sci ; 123: 295-300, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30026093

RESUMO

In this study, we report the antibacterial activity and modulation of antibiotic activity by Fe2(MoO4)3 microstructures obtained by the hydrothermal route without use of surfactants or organic additives. This material was characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM) images. The XRD pattern showed that the Fe2(MoO4)3 crystallize in a monoclinic structure without secondary phases. Raman spectroscopy confirms the formation of Fe2(MoO4)3. SEM images show that the Fe2(MoO4)3 obtained have ball-of-yarn shaped morphology. In the antibacterial assays, strains of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were assayed by microdilution method to evaluate the antibacterial and modulatory-antibiotic activity with antibiotics as gentamicin, norfloxacin and imipenem. Against all bacteria, the Minimum Inhibitory Concentration (MIC) was Fe2(MoO4)3 ≥ 1024 µg/mL. This high MIC result must be associated with the fact of the iron be an essential microelement to the bacterial growth. However, when the Fe2(MoO4)3 was assayed in association with the antibiotics was observed an antagonistic effect demonstrated by an enhance of the MIC. This fact is associated directly with the pro-oxidative properties of metallic oxides. These compounds enhance the production of free radicals, as H2O2 and superoxide ions that can affect the cell structures as cell membrane and cell wall. Other effect is associated with the possible coordination of the metal, performing bonds with the chemical structure of the antibiotics, reducing their activity. Our results indicated that nanocompounds as Fe2(MoO4)3 can not be used as antimicrobial products for clinical usage, neither directly and neither in association with antibiotics.


Assuntos
Antibacterianos/farmacologia , Compostos Férricos/farmacologia , Molibdênio/farmacologia , Nanopartículas , Antibacterianos/química , Antibacterianos/toxicidade , Química Farmacêutica/métodos , Cristalização , Composição de Medicamentos , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/química , Compostos Férricos/toxicidade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Molibdênio/química , Molibdênio/toxicidade , Oxirredução , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...