RESUMO
Flavonoids and hydroxycinnamic acids are the main responsible of the antioxidant activity of chamomile (Matricaria recutita L.). Traditional methods for the analysis of the phenolic content in vegetables often suffer from limitations such as being expensive, time-consuming, and complex. In this study, we propose, for the first time, the use of surface-enhanced Raman spectroscopy (SERS) for the rapid determination of the main components of the polyphenolic fraction in chamomile. Results demonstrate that SERS can serve as an alternative or complementary technique to main analytical strategies for qualitative and quantitative determination of polyphenol compounds in plant extracts. The method can be proposed for quasi real-time analysis of herbal teas and infusions, facilitating rapid screening of their main antioxidant components.
Assuntos
Matricaria , Fenóis , Extratos Vegetais , Análise Espectral Raman , Análise Espectral Raman/métodos , Extratos Vegetais/química , Matricaria/química , Fenóis/análise , Fenóis/química , Camomila/química , Antioxidantes/análise , Antioxidantes/químicaRESUMO
Acanthopanax senticosus belongs to Araliaceae family and is traditionally used as a tonic. The roots and stems are mainly used as treatments for hypodynamia, rheumatism, and hypertension, but their frequent use may lead to extinction. However, comprehensive and simultaneous analysis of the remaining parts were still limited. There is a need to reorganize them for standardization of functional foods. In this study, 50 phenolic compounds and 82 triterpenoid saponins from the shoots, leaves, fruits, and stems of were characterized using UPLC-QTOF-MS and UPLC-QTRAP-MS/MS. Among them, 52 compounds were newly determined as the cis and malonyl-bound phenolic acids and were found to be structural isomers of Acanthopanax flavonoids and saponins. All compounds were absolutely/relatively quantified, and shoots had the highest content. Peroxynitrite and α-glucosidase inhibitory activities were performed, followed by evaluation of structure-activity relationships. Particularly, hederasaponin B and ciwujianoside B showed remarkable efficacy, which were affected by the C-23 hydroxylation, the C-20(29) double bond, and the presence of rhamnose. These detailed profiling can be used as fundamental data for increasing the utilization of A. senticosus and developing them into functional foods.
Assuntos
Antioxidantes , Eleutherococcus , Inibidores de Glicosídeo Hidrolases , Fenóis , Saponinas , Triterpenos , Saponinas/farmacologia , Saponinas/química , Eleutherococcus/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Antioxidantes/farmacologia , Antioxidantes/química , Triterpenos/química , Triterpenos/farmacologia , Fenóis/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Relação Estrutura-Atividade , Folhas de Planta/químicaRESUMO
BACKGROUND: When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS: This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS: The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/ß-catenin pathway. CONCLUSIONS: The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/ß-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Assuntos
Diferenciação Celular , Flavonoides , Inflamação , Células-Tronco Mesenquimais , Osteogênese , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Espécies Reativas de Oxigênio/metabolismo , Inflamação/patologia , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Lipopolissacarídeos/farmacologia , Gengiva/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismoRESUMO
The article discusses the results of the development of a cream based on Populus balsamifera L. bud flavonoids, which have anti-inflammatory, skin-regenerating effects. A cream's anti-inflammatory and wound-healing activity based on a flavonoid substance has been studied. In an experiment on a model of an incised skin wound, it was determined that a cream based on the sum of flavonoids from balsam poplar buds, containing pinostrobin, pinocembrin, tectochrysin, exhibits anti-inflammatory and wound-healing activities. Considering that the effectiveness of local wound treatment mainly depends on the rational treatment of the first phase of the wound process, we have developed a 1â¯% flavonoid cream and its production technology. The technology for the production of flavonoid cream includes extraction and isolation of the sum of flavonoids from the raw material of Populus balsamifera L. buds, preparation of flavonoid substance and excipients, preparation of the cream base and cream, packaging and labelling of cream. Based on the results of our experiments, a pilot industrial regulation for the production of a new cream based on the sum of flavonoids of Populus balsamifera L. buds has been developed, and pilot production of an original medicinal and cosmetic cream was organised.
RESUMO
Ochratoxin A (OTA) is a mycotoxin that causes major health concerns in human and animals. Quercetin (QUE) is a flavonoid that possesses antioxidant, anti-inflammatory and anti-apoptotic properties. This report aims to investigate the ameliorative effects of QUE against OTA-induced hepatotoxicity in broiler chicken. Forty broiler chicks were equally allocated into 4 groups: Group I (control), Group II (OTA), Group III (QUE) and Group IV (OTA+QUE). OTA (0.5 mg/kg) and QUE (0.5 g/kg) were incorporated into the chicken feed for 42 days. The results presented a significant decrease in body weight and elevation in feed conversion ratio, and a significant elevation of the activities of serum alanine aminotransferase and aspartate aminotransferase enzymes in the OTA birds. Additionally, there was a significant decrease in catalase activity and reduced glutathione content and a significant elevation in malondialdehyde level in the liver of OTA-exposed birds. Various hepatocellular lesions were also noticed in the OTA-exposed birds. OTA exposure up-regulated the phosphatase and tensin homologue (PTEN) and the pro-apoptotic genes and down-regulated the anti-apoptotic genes in the liver. The addition of QUE ameliorated most of the hepatotoxic effects of OTA.
RESUMO
Cellular senescence, the irreversible arrest of cell division, is a hallmark of aging and a key contributor to age-related disorders. Targeting senescent cells represents a promising therapeutic approach to combat these ailments. This review explores the potential of Garcinia species, a genus rich in flavonoids with established antioxidant and anti-inflammatory properties, as a source of natural anti-senescence agents. We investigate the intricate connections between aging, cellular senescence, and oxidative stress, highlighting the detrimental effects of free radicals on cellular health. Furthermore, we analyze the diverse array of flavonoids identified within Garcinia and their established cellular mechanisms. We critically evaluate the emerging evidence for the anti-senescence potential of flavonoids in general and the limited research on Garcinia flavonoids in this context. By identifying existing knowledge gaps and paving the way for future research, this review underscores the exciting potential of Garcinia flavonoids as natural anti-senescence agents. These agents hold promise for not only promoting healthy aging but also for the development of cosmeceutical products that combat the visible signs of aging.
RESUMO
Covalent organic structures (MOFs), known for their exceptional properties in separation and purification, have garnered significant attention. However, applying MOF-based adsorbents in complex flavonoid separation scenarios remains challenging. In this study, we successfully synthesized adsorbent materials capable of efficiently adsorbing flavonoids using a vacuum freeze-drying method. The materials were derived from a cross-linked chitosan aerogel functionalized with amino-substituted zeolite imidazolium ester skeleton (ZIF-8). The ZIF-8-NH2, synthesized via in situ substitution of 2-aminobenzimidazole within the ZIF-8 framework, exhibits a smaller pore size than mono ligand ZIF-8. Due to its synergistic interaction with chitosan's biocompatibility and porous structure, the aerogel material (ZIF-8-NH2/CS) exhibited outstanding adsorption capacities (183.37â¯mg/g, 226.34â¯mg/g, and 187.16â¯mg/g) in standard solutions (Tâ¯=â¯318â¯K, rpmâ¯=â¯200) of luteolin, quercetin, and rutin, along with high adsorption rates (71.3⯱â¯2.3â¯%, 72.4⯱â¯1.4â¯%, and 70.7⯱â¯3.5â¯%). And showed rapid adsorption in the first 60â¯min. After 5â¯cycles, the adsorption capacity of ZIF-8-NH2/CS aerogel remained at 80.5â¯% of the adsorption capacity of the initial cycle, and therefore, ZIF-8-NH2/CS aerogel has a good potential for reusability. Additionally, the adsorption process adhered to pseudo-first-order and pseudo-second-order kinetic models, alongside Langmuir and Freundlich isothermal adsorption models. This study introduces novel ideas and methods for the extraction and separation of flavonoids. Furthermore, the developed ZIF-8-NH2/CS aerogels with amino functionality hold promise for diverse applications in separating and purifying bioactive substances.
RESUMO
Citrus flavonoids are group of bioactive polyphenols. Here, we investigated the potential of diosmin, myricetin and neohesperidin as possible inhibitors of Pseudomonas aeruginosa. This bacterium is a major clinical challenge due to its propensity to form resistant biofilm. The aims of this study were to examine flavonoids antibacterial activity using the microdilution method, assays intended to determine several antibiofilm mechanisms (crystal violet, congo red binding, extracellular DNA (eDNA) test and confocal laser scanning microscopy (CLSM) live/dead cell imaging), followed by virulence genes RT-qPCR analysis. Furthermore, we aimed to examine in vivo toxicity of the compounds as well as their efficacy in P. aeruginosa zebrafish embryo infection model. Minimal inhibitory concentrations of tested flavonoids towards P. aeruginosa were in range 0.05 - 0.4â¯mg/mL. A high potential of the compounds to disturb both the formation of the bacterial biofilm and its eradication was recorded, including significant reduction in biofilm biomass, exopolysaccharide and eDNA production. Biofilm treatment with diosmin resulted in the lowest percentage of live microbial cells as observed in the CLSM live/dead cell imaging. The lasI, pvdS, and rhlC genes were found to be downregulated in the presence of diosmin and myricetin. Only diosmin stood out as non-embryotoxic. Consequently, in vivo analysis using a zebrafish model of P. aeruginosa infection showed an antivirulence effect of diosmin. Our findings suggest that diosmin could be potential candidate for the development of new agent that target P. aeruginosa infections by reducing its virulence mechanisms.
RESUMO
The Omicron variant of SARS-CoV-2 spreads more rapidly than other variants and can affect even vaccinated individuals. The Omicron variant main protease (Mpro), crucial for viral replication and transcription, is an attractive target for antiviral drug discovery. This research aims to investigate non-toxic flavonoids that follow Lipinski's rule of five (RO5) and inhibit the Omicron variant Mpro. Molecular docking was performed on 35 flavonoids screened by analysing their medicinal values and adherence to RO5. Catechin (2-(3,4-dihydroxyphenol) chroman-3,5,7-triol), a non-toxic natural compound having predicted toxicity class 6 and LD50 value 10,000 mg/kg, exhibited a docking score of -7.1 kcal/mol with Mpro. The Mpro-catechin complex remained stable during 250 ns MD simulations. The post-MD free energy (MM/GBSA) calculations showed a binding energy of -20.5 kcal/mol, indicating strong interactions with the active amino acid residues. These findings suggest that catechin is a promising drug candidate against the Omicron variant.
RESUMO
Background: This study investigates the association between dietary flavonoid intake and the incidence of mild cognitive impairment (MCI) through a matched case-control design. Methods: Dietary intake was assessed using a food frequency questionnaire, comparing the intake of flavonoids between individuals with MCI and those with normal cognitive function. Logistic regression analysis was employed to evaluate the correlation between dietary flavonoid intake and the risk of MCI. Additionally, blood concentrations of S100ß, a marker of the blood-brain barrier (BBB) integrity, were measured using electrochemiluminescence immunoassay, and Pearson correlation analysis was conducted to explore the relationship between dietary flavonoid intake and blood S100ß levels. Results: Compared to participants with normal cognition, those with MCI had significantly lower dietary intakes of total flavonoids, isoflavones, daidzein, glycitein, genistein, kaempferol, myricetin, flavonols, and anthocyanidins, while the intake of peonidin was significantly higher. Univariate logistic regression analysis indicated that high dietary intake of total flavonoids, isoflavones, daidzein, glycitein, genistein, kaempferol, myricetin, and flavonols was negatively correlated with MCI, whereas peonidin intake was positively correlated with MCI. Multivariate logistic regression analysis confirmed these findings. Pearson correlation analysis revealed a significant negative correlation between dietary intake of kaempferol and myricetin and blood S100ß levels. Conclusion: Increasing the dietary intake of total flavonoids, isoflavones, daidzein, glycitein, genistein, and flavonols appears to be a protective factor against MCI, while higher intake of peonidin is associated with an increased risk of MCI. The protective or adverse effects of these flavonoids may not be related to the permeability of the BBB. Myricetin and kaempferol intake may protect cognitive function by maintaining BBB integrity.
Brief highlights: More attention to neurons Previous studies on the cognitive effects of flavonoid intake have mainly focused on their direct effects on central neurons and glial cells. Less attention to BBB damage Few studies have investigated the effects of flavonoid intake on the BBB, which indirectly affects cognitive function. Negative correlation between BBB damage and Myricetin and Kaempferol It was found that Myricetin and Kaempferol, two components of flavonoids, were negatively correlated with the risk of MCI and negatively correlated with blood levels of the BBB integrity marker S100ß. They may protect cognitive function in middle-aged and elderly people by preserving the integrity of the BBB.
RESUMO
BACKGROUND: Galatella is a genus in the family Asteraceae, represented by 35-45 species. Considering the high effectiveness of the ethyl acetate (EtOAc) fraction of G. grimmii against Mycobacterium tuberculosis (MIC = 0.5 µg/mL), a bioassay-directed fractionation of this extract was carried out. METHODS: The methanolic extract of the aerial parts of G. grimmii was obtained using maceration, then it was suspended in water and partitioned with petroleum ether, dichloromethane (CH2Cl2), EtOAc, and n-butanol (n-BuOH), successively. The most potent fraction (EtOAc), was selected for further isolation by Sephadex LH-20 and semi-preparative HPLC to obtain active compounds. RESULTS: Fractionation of the EtOAc solvent fraction resulted in the characterization of five compounds, among them, compounds 1 and 2 showed the highest anti-mycobacterial effects with MICs of 0.062 and 1.00 µg/mL against H37Rv M. tuberculosis, respectively, which were higher than those of rifampin (MIC of 1.25 µg/mL) and isoniazid (MIC of 0.31 µg/mL), as positive controls. Also, compound 1 ââinhibited all tested strains of drug-resistant Mycobacterium (MDR and XDR). Notably, the isolated compounds have been reported for the first time from G. grimmii. CONCLUSION: Due to the potent anti-mycobacterial effect of isolated compounds from G. grimmii, this study could pave the way for developing a novel class of natural anti-tuberculosis compounds.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Extratos Vegetais , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asteraceae/química , Bioensaio , Componentes Aéreos da Planta/químicaRESUMO
Plant growth-promoting bacteria (PGPB) are considered a promising tool for triggering the synthesis of bioactive compounds in plants and to produce healthy foods. This study aimed to demonstrate the impact of PGPB on the growth, accumulation of primary and secondary metabolites, biological activities, and nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial 16S rDNA-based identification and phylogenetic analysis. The findings revealed that JW0823 significantly boosted plant biomass production by about 45% (P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated plants showed remarkable improvements in their proximate composition and vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the accumulation of bioactive metabolites including antioxidants, vitamins, unsaturated fatty acids, and essential amino acids, thereby improving the nutritional qualities of treated plants. An increase in the amounts of amino acids was recorded, with isoleucine showing the highest increase of 270.2%. This was accompanied by increased activity of the key enzymes involved in amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate synthase, cystathionine γ-synthase, and phenylalanine ammonia-lyase enzymes. Consequently, the total antioxidant and antidiabetic activities of the inoculated plants were enhanced. Additionally, JW0823 improved antimicrobial activity against several pathogenic microorganisms. Overall, the JW0823 treatment is a highly promising method for enhancing the health-promoting properties and biological characteristics of E. sativa, making it a valuable tool for improving the quality of this important leafy vegetable.
RESUMO
Implementing lifestyle interventions as a primary prevention strategy is a cost-effective approach to reducing the occurrence of cancer, which is a significant contributor to illness and death globally. Recent advanced studies have uncovered the crucial role of nutrients in safeguarding women's health and preventing disorders. Genistein is an abundant isoflavonoid found in soybeans. Genistein functions as a chemotherapeutic drug against various forms of cancer, primarily by modifying apoptosis, the cell cycle, and angiogenesis and suppressing metastasis. Furthermore, Genistein has demonstrated diverse outcomes in women, contingent upon their physiological characteristics, such as being in the early or postmenopausal stages. The primary categories of gynecologic cancers are cervical, ovarian, uterine, vaginal, and vulvar cancers. Understanding the precise mechanism by which Genistein acts on ovarian cancer could contribute to the advancement of anti-breast cancer treatments, particularly in situations where no specific targeted therapies are currently known or accessible. Additional investigation into the molecular action of Genistein has the potential to facilitate the development of a plant-derived cancer medication that has fewer harmful effects. This research could also help overcome drug resistance and prevent the occurrence of ovarian cancers.
RESUMO
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aß fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aß protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aß protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced ß-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aß protofilament, and may be considered as a therapeutic agent in treating AD.
RESUMO
The Andean domesticated common beans (Phaseolus vulgaris) are significant sources of phenolic compounds associated with health benefits. However, the regulation of biosynthesis of these compounds during bean seed development remains unclear. To elucidate the gene expression patterns involved in the regulation of the flavonoid pathway, we conducted a transcriptome analysis of two contrasting Chilean varieties, Negro Argel (black bean) and Coscorron (white bean), at three developmental stages associated with seed color change, as well as different flavonoid compound accumulations. Our study reveals that phenolic compound synthesis initiates during seed filling, although it exhibits desynchronization between both varieties. We identified 10,153 Differentially Expressed Genes (DEGs) across all comparisons. The KEGG pathway 'Flavonoid biosynthesis' showed enrichment of induced DEGs in Negro Argel (PV172), consistent with the accumulation of delphinidin, petunidin, and malvidin hexosides in their seeds, while catechin glucoside, procyanidin and kaempferol derivatives were predominantly detected in Coscorrón (PV24). Furthermore, while the flavonoid pathway was active in both varieties, our results suggest that enzymes involved in the final steps, such as ANS and UGT, were crucial, inducing anthocyanin formation in Negro Argel. Additionally, during active anthocyanin biosynthesis, the accumulation of reserve proteins or those related to seed protection and germination was induced. These findings provide valuable insights and serve as a guide for plant breeding aimed at enhancing the health and nutritional properties of common beans.
Assuntos
Flavonoides , Perfilação da Expressão Gênica , Phaseolus , Sementes , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Phaseolus/genética , Phaseolus/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , TranscriptomaRESUMO
Background: Evidence shows that the total flavonoids of Rhizoma Drynariae (TFRD) can improve bone mineral density (BMD). However, there is no evidence to summarize the improvement of biochemical indicators of bone metabolism (BIBM). Methods: The PubMed, Web of Science, Cochrane Library, Embase, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database, Chongqing VIP Information Database (VIP) and SinoMed were searched from inception to 6 May 2024. The final included studies performed meta-analyses using RevMan 5.3. Results: Nine randomized controlled trials (RCTs) were ultimately included. The TFRD group had higher bone gla protein (BGP) and type I procollagen-N-propeptide (PINP) compared to the Other therapies (WMD: 5.11; 95% CI: 3.37, 6.84; p < 0.00001; WMD: 13.89; 95% CI: 11.81, 15.97; p < 0.00001). The tartrate-resistant acid phosphatase (TRACP) decreased significantly (WMD: -1.34; 95% CI: -1.62, -1.06; p < 0.00001). The alkaline phosphatase (ALP) increased significantly (WMD: 7.47; 95% CI: 6.29, 8.66; p < 0.00001). There were no significant differences in serum calcium (SC) or serum phosphorus (SP) levels between the TFRD and control groups (WMD: 0.08; 95% CI: -0.04, 0.20; p = 0.17; WMD: 0.02; 95% CI: -0.02, 0.05; p = 0.36). Conclusion: TFRD can stimulate bone formation and prevent bone resorption in osteoporosis (OP) patients, but it has no effect on SC and SP. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/.
RESUMO
This study examined five plants (Xylopia aethiopica, Agave sisalana, Hardwickia binata, Hedysarum alpinum, and Toxicodendron vernicifluum) for their potential to address insulin resistance in type 2 diabetes. In-vitro assays showed that H. binata leaves and H. alpinum flowers inhibited α-glucosidase and α-amylase while enhancing glucose uptake in normal and insulin-resistant HepG2 cells. Phytochemical screening and SPE purification identified the key constituents responsible for the effects. The chromatographic and spectral analysis confirmed flavonoids in H. binata (myricetin, isorhamnetin, quercetin, kaempferol, and catechin) and H. alpinum (luteolin, quercetin, kaempferol, and apigenin). Myricetin, isorhamnetin, and luteolin significantly increased glucose uptake, enhanced hexokinase and pyruvate kinase activities, and promoted IRec and IRS-1 phosphorylation, modulating insulin signalling. They activated AMPK and Akt, with molecular docking confirming strong AMPK binding. These findings suggest that H. binata, H. alpinum, and their flavonoids are promising candidates for managing insulin resistance and type 2 diabetes, warranting further research.
RESUMO
Knowledge of the chemical composition of propolis is crucial for understanding the characteristics of products of different origins, but also for quality control and regulatory purposes. To date, official monographs or official analyses that allow researchers to evaluate propolis in a proper way have not yet been released. This study focuses on the characterization of twenty-seven Italian propolis samples and the identification of chemical markers that define its geographical provenance. Total polyphenol (TP) and total flavonoid (TF) content, alongside the quantification of pinocembrin, chrysin, galangin, and caffeic acid phenethyl ester (CAPE), were identified as potential markers. Additionally, DPPH assays were conducted to evaluate the antiradical activity of propolis samples. Our findings demonstrated that TPs, TFs and pinocembrin differed in propolis of different origins, especially in samples from the islands. However, the quantification of the sum of chrysin and galangin and CAPE provided a clearer distinction of the geographical origin of the propolis samples. In contrast, the DPPH assay did not prove useful for this purpose, as most results were similar and, therefore, not significant. This study lays the groundwork for future research on propolis. These findings could contribute to the development of more refined methods for distinguishing propolis origins, enhancing the understanding, valuation and quality control of this natural product in various applications.
RESUMO
(1) Background: Improving feed efficiency and the vitality of the reproductive system in the late stage of the egg-laying period is of great significance for prolonging the egg-laying cycle and improving egg quality. In the present study, a new flavonoid, which was extracted from kudzu leaf, was chosen to investigate its effects on the productive performance and egg quality of late-laying hens. (2) Methods: A total of 360 500-day-old Hy-Line Brown layer hens were randomly divided into a control treatment group (no KLF supplementation), and groups that received 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% KLF supplement treatments. Each treatment contained 6 replicates, with 10 hens in each replicate. Productive performance metrics, including the daily egg production, egg weight, the number of deformed eggs, egg quality, egg density, egg shape index, eggshell strength, yolk color, and the Haugh unit, were meticulously recorded for each replicate. Furthermore, microbial communities and hypothalamus gene expressions were investigated based on the results of the productive performance and egg quality. (3) Results: KLF supplementation significantly decreased the deformity rate while significantly increasing the eggshell strength in the finishing phase afterward (p < 0.05). Specifically, hens supplemented with 0.6% KLF possessed the lowest deformed egg rate. KLF supplementation significantly increased the relative abundances of Bifidobacterium sp., Blautia sp., Lactococcus sp., and Lactobacillus sp., while significantly decreasing Parasutterella sp. and Escherichia-Shigella sp. (p < 0.05). Furthermore, the interactive analysis showed the hypothalamus gene expression mainly interacted with probiotics, such as Bifidobacterium sp. and Lactobacillus sp., through ribosome biogenesis, nucleocytoplasmic transport, and cAMP signaling pathways. (4) Conclusions: The findings of the present study indicate that KLF supplementation significantly proliferated probiotics, such as Bifidobacterium and Lactobacillus, which may have further interacted with hypothalamus genes, thus decreasing the deformity rate while increasing eggshell strength in the finishing phase.
RESUMO
(1) Background: The non-enzymatic glycation of proteins is a significant contributor to the formation of advanced glycation end products (AGEs) and intermediates that are responsible for diabetic complications. It is imperative to explore effective inhibitors to prevent protein glycation. (2) Methods: This study aimed to investigate the inhibitory potential of various aqueous ethanol extracts of poplar-type propolis on AGEs and oxidative modifications in bovine serum albumin (BSA)-glucose and BSA-methylglyoxal models. (3) Results: The results revealed that these propolis extracts exhibited significant effectiveness in inhibiting the formation of total AGEs, pentosidine, and Nε-carboxymethyllysine (CML). Furthermore, the investigation discovered that these propolis extracts can effectively inhibit oxidative modification, based on measuring the levels of carbonyl and thiol groups and analyzing tryptophan fluorescence quenching. Notably, 75% ethanol extracts of propolis (EEP) exhibited the highest inhibitory activity, surpassing the chemical inhibitor aminoguanidine (AG). (4) Conclusions: The remarkable anti-glycation potency of aqueous ethanol extracts of poplar-type propolis can be attributed to their elevated contents of phenolic compounds, especially abundant flavonoids, which inhibit the formation of AGEs by scavenging free radicals, decreasing the levels of reactive oxygen species (ROS), and capturing reactive carbonyl species (RCS) in the protein glycation process. Our results indicate that poplar-type propolis may be a potential AGE inhibitor and could be used to develop functional foods and nutraceuticals to prevent diabetic complications.