Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.119
Filtrar
1.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095186

RESUMO

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Assuntos
Compostos de Manganês , Níquel , Óxidos , Ozônio , Óxidos/química , Níquel/química , Compostos de Manganês/química , Ozônio/química , Catálise , Umidade , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
2.
Mol Cell Biochem ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223351

RESUMO

Diabetes is a well-known risk factor for atherosclerosis (AS), but the underlying molecular mechanism remains unknown. The dysregulated immune response is an important reason. High glucose is proven to induce foam cell formation under lipidemia situations in clinical patients. Exploring the potential regulatory programs of accelerated foam cell formation stimulated by high glucose is meaningful. Macrophage-derived foam cells were induced in vitro, and high-throughput sequencing was performed. Coexpression gene modules were constructed using weighted gene co-expression network analysis (WGCNA). Highly related modules were identified. Hub genes were identified by multiple integrative strategies. The potential roles of selected genes were further validated in bulk-RNA and scRNA datasets of human plaques. By transfection of the siRNA, the role of the screened gene during foam cell formation was further explored. Two modules were found to be both positively related to high glucose and ox-LDL. Further enrichment analyses confirmed the association between the brown module and AS. The high correlation between the brown module and macrophages was identified and 4 hub genes (Aldoa, Creg1, Lgmn, and Pkm) were screened. Further validation in external bulk-RNA and scRNA revealed the potential diagnostic and therapeutic value of selected genes. In addition, the survival analysis confirmed the prognostic value of Aldoa while knocking down Aldoa expression alleviated the foam cell formation in vitro. We systematically investigated the synergetic effects of high glucose and ox-LDL during macrophage-derived foam cell formation and identified that ALDOA might be an important diagnostic, prognostic, and therapeutic target in these patients.

3.
J Dairy Sci ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218069

RESUMO

In this study, possible reasons for an increased level of free fatty acids (FFAs) in Ultra-High Temperature (UHT) treated full fat (3.5% wt/wt) milk and its effect on the frothing properties of milk were investigated. Lipolysis of raw milk from 2 different breeds of cattle (Holstein and Jersey) was induced by mechanical stress and kinetics of lipolysis were compared. Frothing capacity and foam stability of shelf stable milk with different concentrations of FFAs were determined, with a good to medium initial foam volume for up to 4 mEquiv FFA · (100 g fat)-1 fat and poor foam stability with >2 mEquiv FFA · (100 g fat)-1. A combination of mechanical stress and initial condition of fresh raw milk was found to trigger lipolysis and potential sources of mechanical stress during milk processing were identified.

4.
Mol Biol Rep ; 51(1): 968, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249599

RESUMO

BACKGROUND: Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS: We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION: Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.


Assuntos
Proteína ADAMTS4 , Regulação para Baixo , Flavonoides , Células Espumosas , Flavonoides/farmacologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Sobrevivência Celular/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética
5.
Cell Biochem Biophys ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235508

RESUMO

Metformin has a long history of clinical application and has been shown to have outstanding ability in lowering glucose. Recent advances have further revealed its broad modulatory ability beyond glucose-lowering, expanding the scope of metformin applications. Metformin has now been applied as a viable lipid-lowering strategy in non-hyperglycemic obese patients. However, the benefits and underlying pharmacological mechanisms of metformin administration in non-hyperglycemic populations remain to be explained. Our study aimed to systematically investigate the differences in the lipid-lowering function and pharmacological mechanisms of metformin in high- and low-sugar conditions to facilitate the development of individualized metformin use regimens for different clinical patients. We constructed macrophage-derived foam cell models in vitro for subsequent analysis. ORO results showed that metformin significantly reduced lipid accumulation in macrophages in both high and low glucose environments, but the lipid decline was higher in the high glucose environment. By mutual validation and joint analysis of transcriptomics and metabolomics, significant differences in metformin transcriptional and metabolic patterns existed among high and normal glucose environments. The significant alterations of genes such as DGKA, LPL, DGAT2 and lipid metabolites such as LysPA and LysPC partially explained the glucose-dependent pharmacological function of metformin. In conclusion, our study confirmed that the lipid-lowering effect of metformin depends on the extracellular glucose concentration, and systematically studied the molecular mechanism of metformin in different glycemic environments, which provides a certain reference value for the subsequent in-depth study and clinical application.

6.
Front Neurol ; 15: 1444896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220735

RESUMO

Background: Foam sclerotherapy is currently the first-line treatment for venous malformations (VMs). Hyaluronic acid-polidocanol (HA-POL) foam has been used in the treatment of head and neck VMs recently; however, its clinical efficacy and safety have yet to be further evaluated, and the impact of age and other related factors on its safety is still unclear. Objective: To assess the efficacy and safety of HA-POL foam in the treatment of head and neck VMs. Methods and materials: We performed a single-center retrospective review of all patients with VMs involving the head and neck region undergoing HA-POL foam sclerotherapy from February 2015 to February 2022 in the Oral and Maxillofacial Surgery Department of Qilu Hospital Shandong University. Patients' medical records were collected and all patients enrolled were followed up for 1-6 months (group 1), part of them were followed up for 3-9 years (group 2). Results: A total of 223 patients with head and neck VMs were enrolled in the study, with 36 patients who were followed for 3-9 years. Total response rate in group 1 was 96.41% (n = 215), of which 30.94% (n = 69) of the patients met the criteria of "resolution," and 65.47% (n = 146) of the patients had "significant improvement." In group 2, the total response rate was 72.22% (n = 26), of which the rates of the patients met the criteria of "resolution" and patients had "significant improvement" were all 36.11% (n = 13)0.144 (64.57%) patients experienced complications like localized swelling, pain and fever, and no serious complications occurred. The risk of developing complications after treatment was independent of age, and was weakly associated with the dose of HA-POL foam. Conclusion: The HA-POL foam sclerotherapy is safe and effective in the treatment of head and neck VMs.

7.
J Med Signals Sens ; 14: 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100744

RESUMO

Background: A significant number of frames captured by the wireless capsule endoscopy are involved with varying amounts of bubbles. Whereas different studies have considered bubbles as nonuseful agents due to the fact that they reduce the visualization quality of the small intestine mucosa, this research aims to develop a practical way of assessing the rheological capability of the circular bubbles as a suggestion for future clinical diagnostic purposes. Methods: From the Kvasir-capsule endoscopy dataset, frames with varying levels of bubble engagements were chosen in two categories based on bubble size. Border reflections are present on the edges of round-shaped bubbles in their boundaries, and in the frequency domain, high-frequency bands correspond to these edges in the spatial domain. The first step is about high-pass filtering of border reflections using wavelet transform (WT) and Differential of Gaussian, and the second step is related to applying the Fast Circlet Transform (FCT) and the Hough transform as circle detection tools on extracted borders and evaluating the distribution and abundance of all bubbles with the variety of radii. Results: Border's extraction using WT as a preprocessing approach makes it easier for circle detection tool for better concentration on high-frequency circular patterns. Consequently, applying FCT with predefined parameters can specify the variety and range of radius and the abundance for all bubbles in an image. The overall discrimination factor (ODF) of 15.01, and 7.1 showing distinct bubble distributions in the gastrointestinal (GI) tract. The discrimination in ODF from datasets 1-2 suggests a relationship between the rheological properties of bubbles and their coverage area plus their abundance, highlighting the WT and FCT performance in determining bubbles' distributions for diagnostic objectives. Conclusion: The implementation of an object-oriented attitude in gastrointestinal analysis makes it intelligible for gastroenterologists to approximate the constituent features of intra-intestinal fluids. this can't be evaluated until the bubbles are considered as non-useful agents. The obtained results from the datasets proved that the difference between the calculated ODF can be used as an indicator for the quality estimation of intraintestinal fluids' rheological features like viscosity, which helps gastroenterologists evaluate the quality of patient digestion.

8.
Materials (Basel) ; 17(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124376

RESUMO

The soft PBAT foam shows good flexibility, high elasticity, degradable nature, and it can be used as an environmental-friendly candidate for EVA and PU foams. Unfortunately, there are few reports on the application of PBAT as a soft foam. In this study, PBAT foam was fabricated by a pressure quenching method using CO2 as the blowing agent. A significant volume shrinkage of about 81% occurred, where the initial PBAT foam had an extremely high expansion ratio, of about 31 times. A 5-10 wt% PBS with high crystallinity was blended, and N2 with low gas solubility and diffusivity was mixed, with the aim of resisting foam shrinkage and preparing PBAT with a high final expansion ratio of 14.7 times. The possible mechanism behind this phenomenon was established, and the increased matrix modulus and decreased pressure difference within and outside the cell structure were the main reasons for the shrinkage resistance. The properties of PBAT and PBAT/PBS foams with a density of 0.1 g/cm3 were measured, based on the requirements for shoe applications. The 5-10 wt% PBS loading presented advantages in reducing thermal shrinkage at 75 °C/40 min, without compromising the hardness, elasticity, and the compression set, which ensures that PBAT/PBS foams have good prospects for use as soft foams.

9.
Materials (Basel) ; 17(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124415

RESUMO

Although bamboo is widely distributed in Japan, its applications are very limited due to its poor combustion efficiency for fuel. In recent years, the expansion of abandoned bamboo forests has become a social issue. In this research, the possibility of a liquefaction process with fast and efficient liquefaction conditions using moso bamboo as raw material was examined. Adding 20 wt% ethylene carbonates to the conventional polyethylene glycol/glycerol mixed solvent system, the liquefaction time was successfully shortened from 120 to 60 min. At the same time, the amount of sulfuric acid used as a catalyst was reduced from 3 wt% to 2 wt%. Furthermore, polyurethane foam was prepared from the liquefied product under these conditions, and its physical properties were evaluated. In addition, the filler effects of rice husk biochar and moso bamboo fine meals for the polyurethane foams were characterized by using scanning electron microscopy (SEM) and thermogravimetry and differential thermal analysis (TG-DTA), and the water absorption and physical density were measured. As a result, the water absorption rate of bamboo fine meal-added foam and the thermal stability of rice husk biochar-added foam were improved. These results suggested that moso bamboo meals were made more hydrophilic, and the carbon content of rice husk biochar was increased.

10.
Materials (Basel) ; 17(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124511

RESUMO

In this study, the crashworthiness behavior and energy absorption capacity of composite tubes under lateral indentation by steel rods aligned parallel to the specimen axis are investigated using experimental methods. Key parameters such as tube diameter, length, wall thickness, and indenter diameter are systematically examined and compared. Additionally, the influence of polyurethane foam fillers on damage modes and energy absorption capacity is rigorously analyzed. Contrary to conventional findings, smaller diameter specimens filled with foam demonstrate superior energy absorption compared to their larger counterparts, primarily due to enhanced compression of the foam volume. Experimental results reveal a complex interplay of damage mechanisms in composite specimens, including matrix cracking, fiber breakage, foam crushing, foam densification, foam fracture, and debonding of composite layers, all contributing to enhanced energy absorption. Increased tube thickness, length, and indenter diameter, alongside decreased tube diameter, are correlated with higher contact forces and improved energy absorption. Smoother shell fractures are promoted, and overall energy absorption capabilities are enhanced by the presence of foam fillers. This investigation provides valuable insights into the structural response and crashworthiness of composite tubes, which is essential for optimizing their design across various engineering applications.

11.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125111

RESUMO

Rigid polyurethane foam (RPUF) is widely utilized in construction and rail transportation due to its lightweight properties and low thermal conductivity, contributing to energy conservation and emission reduction. However, the inherent flammability of RPUF presents significant challenges. Delaying the time to ignition and preventing flame spread post-combustion is crucial for ensuring sufficient evacuation time in the event of a fire. Based on this principle, this study explores the efficacy of using potassium salts as a catalyst to promote the self-cleavage of RPUF, generating substantial amounts of CO2, thereby reducing the local oxygen concentration and delaying ignition. Additionally, the inclusion of a reactive flame retardant (DFD) facilitates the release of phosphorus-oxygen free radicals during combustion, disrupting the combustion chain reaction and thus mitigating flame propagation. Moreover, potassium salt-induced catalytic carbonization and phosphorus derivative cross-linking enhance the condensed phase flame retardancy. Consequently, the combined application of potassium salts and DFD increases the limiting oxygen index (LOI) and reduces both peak heat release rate (PHRR) and total heat release (THR). Importantly, the incorporation of these additives does not compromise the compressive strength or thermal insulation performance of RPUF. This integrated approach offers a new and effective strategy for the development of flame retardant RPUF.

12.
Polymers (Basel) ; 16(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125147

RESUMO

Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production-especially in rigid PU foams (RPUF) where isocyanate is used in excess of the stoichiometric ratio. In this study, lignin-containing nanocellulose fibrils (LCNF) were explored as mechanical reinforcements for RPUF with the goal of maintaining the mechanical performance of the foam while using less isocyanate. Different amounts of LCNF (0-0.2 wt.%) were added to the RPUF made using isocyanate indices of 1.1, 1.05, 1.0, and 0.95. Results showed that LCNF served as a nucleating agent, significantly reducing cell size and thermal conductivity. LCNF addition increased the crosslinking density of RPUF, leading to enhanced compressive properties at an optimal loading of 0.1 wt.% compared to unreinforced foams at the same isocyanate index. Furthermore, at the optimal loading, LCNF-reinforced foams made at lower isocyanate indices showed comparable stiffness and strength to unreinforced foams made at higher isocyanate indices. These results highlight the reinforcing potential of LCNF in rigid polyurethane foams to improve insulation and mechanical performance with lower isocyanate usage.

13.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125238

RESUMO

In practical applications, polyurethane (PU) foam must be rigid to meet the demands of various industries and provide comfort and protection in everyday life. PU foam components are extensively used in structural foam, thermal insulation, decorative panels, packaging, imitation wood, and floral foam, as well as in models and prototypes. Conventional technology for producing PU foam parts often leads to defects such as deformation, short shots, entrapped air, warpage, flash, micro-bubbles, weld lines, and voids. Therefore, the development of rigid PU foam parts has become a crucial research focus in the industry. This study proposes an innovative manufacturing process for producing rigid PU foam parts using silicone rubber molds (SRMs). The deformation of the silicone rubber mold can be predicted based on its wall thickness, following a trend equation with a correlation coefficient of 0.9951. The volume of the PU foam part can also be predicted by the weight of the PU foaming agent, as indicated by a trend equation with a correlation coefficient of 0.9824. The optimal weight ratio of the foaming agent to water, yielding the highest surface hardness, was found to be 5:1. The surface hardness of the PU foam part can also be predicted based on the weight of the water used, according to a proposed prediction equation with a correlation coefficient of 0.7517. The average surface hardness of the fabricated PU foam part has a Shore O hardness value of approximately 75. Foam parts made with 1.5 g of water added to 15 g of a foaming agent have the fewest internal pores, resulting in the densest interior. PU foam parts exhibit excellent mechanical properties when 3 g of water is added to the PU foaming agent, as evidenced by their surface hardness and compressive strength. Using rigid PU foam parts as a backing material in the proposed method can reduce rapid tool production costs by about 62%. Finally, an innovative manufacturing process for creating large SRMs using rigid PU foam parts as backing material is demonstrated.

14.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125250

RESUMO

Hot air, water, and glycerol were studied as foaming mediums for the production of ETPU to evaluate their influence on the behavior of the foam and compare the optimal particles for each of the foaming temperatures selected. The results showed that the times of water foaming and glycerol foaming were shorter by about 2/3 than with hot-air foaming. The best foaming temperatures for hot-air foaming, glycerol foaming, and water foaming are 110-115 °C, 75 °C, and 90 °C, respectively. The particles of glycerol foam have a matte appearance and their gloss is not very good. However, the particles in hot-air foaming are light, and the gloss is very satisfactory. The gloss of the surface of water-foaming particles is dim. At the same time, there is a faint matte appearance. Particles made with glycerol foaming and water foaming are more even than those made with hot-air foaming. The density of foaming materials from glycerol foaming, hot-air foaming, and water foaming are raised accordingly, while the hardness of foaming materials from glycerol foaming, water foaming, and hot-air foaming are successively increased.

15.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125255

RESUMO

Ammonium polyphosphate (APP) and self-made nickel phytate (PANi) were used as modified materials to prepare green biomass rigid polyurethane foam (RPUF). The flame retardancy, thermal stability, smoke toxicity and mechanical properties of the modified RPUF were investigated by limiting oxygen index (LOI), a cone calorimetry (CONE) test, thermogravimetric analysis and a compression test. The results showed that the RPUF with 10 wt% APP (PANi/APP10) had the highest LOI of 26.5%. Its peak heat release rate (PHRR) and total heat release (THR) were reduced by 29.64% and 24.05% compared with PANi/APP0 without APP. And its smoke production rate (SPR) and total smoke release (TSR) decreased by 33.14% and 19.88%, respectively. Compared with pure RPUF, the compressive strength of PANi/APP10 was increased by 50%, mainly because APP itself was an ultra-fine powder, which was better compatible with the matrix and improved the hardness of the material. The results showed that the synergistic effect of the gas phase and the condensed phase mechanism could effectively improve the flame-retardant effect. The current research results provided a new strategy for the preparation of green and low-toxicity RPUF.

16.
Water Sci Technol ; 90(3): 665-679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141028

RESUMO

Development of low-cost and reliable reactors demanding minimal supervision is a need-of-the-hour for sewage treatment in rural areas. This study explores the performance of a multi-stage sponge-filled trickling filter (SPTF) for sewage treatment, employing polyethylene (PE) and polyurethane (PU) media. Chemical oxygen demand (COD) and nitrogen transformation were evaluated at hydraulic loading rates (HLRs) ranging from 2 to 6 m/d using synthetic sewage as influent. At influent COD of ∼350 mg/L, PU-SPTF and PE-SPTF achieved a COD removal of 97% across all HLRs with most of the removal occurring in the first segments. Operation of PE-SPTF at an HLR of 6 m/d caused substantial wash-out of biomass, while PU-SPTF retained biomass and achieved effluent COD < 10 mg/L even at HLR of 8-10 m/d. The maximum Total Nitrogen removal by PE-SPTF and PU-SPTF reactors was 93.56 ± 1.36 and 92.24 ± 0.66%, respectively, at an HLR of 6 m/d. Simultaneous removal of ammonia and nitrate was observed at all the HLRs in the first segment of both SPTFs indicating ANAMMOX activity. COD removal data, media depth, and HLRs were fitted (R2 > 0.99) to a first-order kinetic relationship. For a comparable COD removal, CO2 emission by PU-SPTF was 3.5% of that of an activated sludge system.


Assuntos
Análise da Demanda Biológica de Oxigênio , Filtração , Nitrogênio , Esgotos , Nitrogênio/química , Esgotos/química , Filtração/métodos , Filtração/instrumentação , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
17.
ACS Appl Mater Interfaces ; 16(33): 43647-43660, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106148

RESUMO

CO2-responsive foam (CRF) is a highly promising candidate for CO2-enhanced oil recovery (CO2-EOR) because it displays higher stability than the surfactant-stabilized foam owing to the formation of robust wormlike micelles (WLMs) upon exposure to CO2. In this work, the nanoparticle-enhanced CO2-responsive foam (NECRF) was properly prepared using lauryl ether sulfate sodium (LES)/diethylenetriamine/nano-SiO2, and its interfacial properties and EOR potential were experimentally and numerically assessed, aiming to explore the feasibility and effectiveness of NECRF as a novel CO2-EOR technique. It was found that the interfacial expansion elastic modulus increased 6-fold after CO2 stimulation. The modulus continued to increase with the introduction of nano-SiO2 owing to the pronounced synergistic effect of WLMs and nanoparticles. In addition to increasing the viscosity of the foaming liquid, WLMs and nano-SiO2 enhanced the shearing resistance of the NECRF as well. Calculations demonstrated that both the coarsening rate and the size distribution uniformity coefficient of NECRF were markedly lower than that of the LES foam, which subsequently inhibited NECRF decay and greatly improved its dynamic stability. Besides, molecular dynamics simulation revealed that adding inorganic salts to NECRF could notably enhance the foaming performance due to the intensified hydration of surfactant head groups and reduced binding energy of neighboring molecules. Nuclear magnetic resonance-assisted core flooding experiments validated the exceptional capacity of NECRF to sweep the low-permeability region and improve the conformance profile. Overall, these findings may provide valuable insights into the development and application of novel materials and strategies for the CO2-EOR.

18.
World J Gastroenterol ; 30(27): 3326-3335, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39086750

RESUMO

BACKGROUND: Endoscopic rubber band ligation (ERBL) is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain. AIM: To evaluate satisfaction, long-term recurrence, and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL. METHODS: This was a prospective, multicenter, randomized study. A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding (EFSB) or an ERBL group. All patients were followed-up for 12 months. Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score (HSS) and a visual analog scale (VAS). Continuous variables were reported as medians and interquartile range. RESULTS: One hundred and ninety-five patients were enrolled, with 98 in the EFSB group. HSS was lower in the EFSB group than in the ERBL group at 8 weeks [4.0 (3.0-5.0) vs 5.0 (4.0-6.0), P = 0.003] and 12-month [2.0 (1.0-3.0) vs 3.0 (2.0-3.0), P < 0.001] of follow-up. The prolapse recurrence rate was lower in the EFSB group at 12 months (11.2% vs 21.6%, P = 0.038). Multiple linear regression analysis demonstrated that EFSB treatment [B = -0.915, 95% confidence interval (CI): -1.301 to -0.530, P = 0.001] and rubber band number (B = 0.843, 95%CI: 0.595-1.092, P < 0.001) were negatively and independently associated with the VAS score 24 hours post-procedure. The median VAS was lower in the EFSB group than in the ERBL [2.0 (1.0-3.0) vs 3.0 (2.0-4.0), P < 0.001]. CONCLUSION: Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.


Assuntos
Hemorroidas , Polidocanol , Recidiva , Soluções Esclerosantes , Escleroterapia , Humanos , Polidocanol/administração & dosagem , Polidocanol/uso terapêutico , Hemorroidas/terapia , Hemorroidas/diagnóstico , Hemorroidas/cirurgia , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Prospectivos , Escleroterapia/métodos , Resultado do Tratamento , Ligadura/métodos , Soluções Esclerosantes/administração & dosagem , Adulto , Idoso , Índice de Gravidade de Doença , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/diagnóstico , Satisfação do Paciente , Medição da Dor , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico
19.
Innate Immun ; : 17534259241269687, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090856

RESUMO

Cardiovascular diseases (CVDs) linked to atherosclerosis remains the leading cause of death worldwide. Atherosclerosis is primarily caused by the accumulation of oxidized forms of low density lipoprotein (LDL) in macrophages (MΦs) in the subendothelial layer of arteries leading to foam cell and fatty streak formation. Many studies suggest that LDL that is modified by myeloperoxidase (MPO) is a key player in the development of atherosclerosis. MΦs can adopt a variety of functional phenotypes that include mainly the proinflammatory M1 and the anti-inflammatory M2 MΦ phenotypes which are both implicated in the process of atherogenesis. In fact, MΦs that reside in atherosclerostic lesions were shown to express a variety of phenotypes ranging between the M1- and M2 MΦ types. Recently, we pointed out the involvement of MPO oxidized-LDL (Mox-LDL) in increasing inflammation in MΦs by reducing their secretion of IL-10. Since little is known about Mox-LDL-mediated pro-atherosclerostic responses in MΦs, our study aimed at analyzing the in vitro effects of Mox-LDL at this level through making use of the well-established model of human THP-1-derived Mφs. Our results demonstrate that Mox-LDL has no effect on apoptosis, reactive oxygen species (ROS) generation and cell death in our cell model; yet, interestingly, our results show that Mox-LDL is significantly engulfed at a higher rate in the different MΦ subtypes supporting its key role in foam cell formation during the progression of the disease as well as previous data that were generated using another primary MΦ cell model of atherosclerosis.

20.
Small ; : e2405357, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115110

RESUMO

Sodium metal is regarded as one of the most promising anode materials due to its high theoretical capacity (1166 mAh g-1) and low redox potential (-2.714 V vs standard hydrogen electrode). However, the practical application of sodium metal is hindered by the formation of dendrites during Na stripping and plating, which can degrade performance and cause potential safety hazards. To address this issue, previous work focuses on leveraging either 3D current collectors or liquid metal modification on current collectors. In this work, both strategies are simultaneously leveraged to design a 3D Cu foam with liquid metal modification (LM@Cu) for dendrite-free sodium plating. The 3D configuration of Cu effectively reduces local current density and evenly distributes electric fields, while the introduction of liquid metal enhances the sodiophilicity of Cu to lower the nucleation barrier for sodium, thereby promoting its uniform plating. As a result, symmetric cells of Na with LM@Cu maintain stable cycling for over 2800 h. Additionally, full cells comprising Na-LM@Cu and Na3V2(PO4)3 sustain 97.5% of the capacity upon 1000 cycles, underscoring the great potentiality of liquid metal-mediated 3D current collectors in energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...