Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Anal Chim Acta ; 1312: 342788, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834273

RESUMO

BACKGROUND: Mineral oil aromatic hydrocarbon (MOAH) analysis in foods is a major analytical challenge. Quantification is associated with a high uncertainty. The sources of uncertainty are multiple, but the major one is related to data interpretation and integration, which is partially derived from insufficiently efficient sample preparation. Recently, an updated ISO method for the analysis of mineral oil in fats and oils and a standard operating procedure for infant formula analysis have been published. Both methods reported significantly different (up to 1.25) distributions of the internal standards used for quantification (i.e., tri-tert-butyl benzene (TBB) and 2-methyl naphthalene (2-MN)) over the different solvent phases used in the saponification step. RESULTS: In this work, a microwave-assisted saponification and extraction method was optimized for MOAH analysis to solve the problem related to the MOAH internal standards partition. The paper examines the impact of the solvent mixture used, the concentration of KOH on the partition of TBB and 2-MN, and the effect of the matrix and the washing step to extract the unsaponifiable fraction containing the mineral oils. SIGNIFICANCE: The optimized procedure achieved a TBB/2-MN ratio of 1.05 ± 0.01 tested in five different fats and oils, namely, sunflower, rapeseed, coconut, palm, and extra virgin olive oils. The method can significantly contribute to reducing the uncertainty of the MOAH quantification when saponification is applied.


Assuntos
Micro-Ondas , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Óleo Mineral/química
2.
Animals (Basel) ; 14(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791667

RESUMO

This study assessed saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) levels in grower-finisher feeds for pigs supplemented with 5% crude palm oil (CP), crude olive pomace oil (COP), olive pomace acid oil (OPA), or a blend of CP and OPA (50:50, w/w); the contribution of the lipid source to that contamination; and the ability of pigs to accumulate MOH in back fat and loin tissues after 60 days of trial. MOSH and MOAH were analyzed with liquid chromatography (LC)-gas chromatography (GC)-flame ionization detection (FID) after sample preparation. Among the lipid sources, CP had the lowest MOH levels, but CP feeds showed the highest contamination. This, along with the different MOSH profiles, indicated the presence of more significant contamination sources in the feeds than the lipid source. The higher MOH contamination in CP feeds was reflected in the highest MOSH levels in pig back fat, whereas MOAH were not detected in animal tissues. Also, MOSH bioaccumulation in pig tissues was influenced by the carbon chain length. In conclusion, feed manufacturing processes can determine the MOSH contamination present in animal adipose tissues that can be included in human diets.

3.
Heliyon ; 10(10): e30596, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778986

RESUMO

Cholesterol analysis by derivatization technique is a time consuming, costly, and complex process while analyzing cholesterol without derivation is a simple, and quick method.Researchers analyzed cholesterol using both derivatization and non-derivatization techniques successfully. The objective of this study was to investigate the effect of derivatization in cholesterol analysis particularly on bakery goods.The retention time of non-derivatized cholesterol (11.62 min) and non-derivatized α-tocopherol standard (11.60 min) was very close in HP-5 capillary GC column andthey eluted together while injected as mixed standard. As a result, cholesterol content determined by non-derivatized technique could be overestimated due to the presence of α-tocopherol inbakery products. The peak resolution (Rs) between derivatized cholesterol and derivatized α-tocopherol standard using the appliedgradient GC condition was 3.1 which is well separated (>1.5) based on AOAC guidelines. The derivatized gas chromatographic cholesterol analysis method was verified by limit of detection (LOD; 0.03 mg/100 g), limit of quantification (LOQ; 0.08 mg/100 g), linearity (R2; 0.999),precision (repeatability: relative standard deviation (RSD) 1.5 %; reproducibility: RSD 1.9 %), and accuracy (102.1 % recovery). The verified cholesterol analysis method was subsequently applied to determine cholesterol content in selected bakery items, yielding a range of 2.76 ± 0.06 mg/100 g (chrysanthemum bread) to 114.26 ± 4.72 mg/100 g (castella).

4.
BMC Plant Biol ; 24(1): 483, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822252

RESUMO

BACKGROUND: Zataria multiflora Boiss. is a medicinal and aromatic plant from the Lamiaceae family. It is extensively used in Iranian traditional medicine, mostly as a replacement for Thyme species. This study was focused on the analysis of chemical composition and the distribution and types of trichomes of Z. multiflora grown under different conditions. Equilibrium headspace analysis in combination with GC-FID-MS was used to identify volatile compounds released by aerial parts of Z. multiflora in development stages of 50 and 100% flowering under normal and drought-stress conditions. RESULTS: The main constituents were p-cymene (20.06-27.40%), γ-terpinene (12.44-16.93%), and α-pinene (6.91-16.58%) and thymol (8.52-9.99%). The highest content of p-cymene (27.40%) and thymol (9.99%) was observed in the 50% flowering stage at the 90% field capacity, while the maximum γ-terpinene (16.93%) content was recorded in the 100% flowering stage under normal conditions. Using the SEM method, it was found that peltate glandular and non-glandular trichomes are distributed on the surface of the leaf, stem, and outer side of the calyx. However, capitate trichomes only are detected on the stem and calyx in the 100% flowering and beginning of blooming stages, respectively. The type and structure of trichomes do not vary in different development stages, but they differ in density. The highest number of leaf peltate glandular trichomes was observed in the vegetative and beginning of blooming stages at 50% and 90% field capacity, respectively. Non-glandular trichomes of the stem were observed with high density in both normal and stress conditions, which are more densely in 90% field capacity. CONCLUSIONS: Since this plant has strong potential to be used in the food and pharmacological industries, this study provides valuable information for its cultivation and harvesting at specific phenological stages, depending on desired compounds and their concentrations.


Assuntos
Lamiaceae , Tricomas , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/metabolismo , Lamiaceae/fisiologia , Lamiaceae/química , Secas , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Estresse Fisiológico , Monoterpenos Cicloexânicos/metabolismo , Cimenos/metabolismo , Monoterpenos/metabolismo , Monoterpenos Bicíclicos/metabolismo , Timol/metabolismo
5.
Data Brief ; 54: 110362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586144

RESUMO

Fatty acids are present in many foods, either free or esterified. Their presence helps to characterize and classify the food. The nature of these fatty acids is also associated with the treatments applied. To assess the fatty acid profile of these matrices, extractions are carried out using different solvents that influence the nature and lipid profile. The subsequent derivatization of fatty acids to more volatile fatty acyl methyl esters (FAMEs) prior to determination of the fatty acid profile takes into account the nature of the extraction solvent. Thus, the present work proposes to determine the fatty acid profile by Gas Chromatography Flame Ionisation Detector (GC-FID) of two lipid extracts derivatized by the MeOH/KOH and Hexane/MeOH/MeOH-BF3 procedures. Freshly harvested Tetracarpidium conophorum nuts from fields in the Fombap locality were brought to the laboratory where they were boiled (95 °C; 30 min), shelled, cut into small cubes and dried for 48 h at 45 °C. The dried seeds were ground and the resulting paste macerated in hexane for 48 h. The liquid fraction obtained was concentrated using a rotavapor, and the lipid extracts were stored at -15 °C. The egusi pudding was obtained by mixing 100 g of egusi seed paste with 0.50 g of white Piper nigrum powders, then packed in bulrush leaves and steamed for 120 min. After cooking, the product was stored for 4 days at room temperature and reheated twice a day. At the end of the last day, the lipid fraction oil was extracted following the methodology of Bligh and Dyer [1], then concentrated and preserved as before. The lipid extracts were then methylated using MeOH/KOH and Hexane/MeOH/MeOH-BF3 methods before injection into a GC-FID equipped with a Stabil Wax®-DA column. Supelco's standard mix of 37 FAMEs was used to identify and quantify the fatty acids present in the various samples. The results obtained enable us to identify the different fatty acids according to the retention time of their corresponding FAMEs and to quantify them. The fatty acids obtained were classified as saturated and unsaturated (mono and polyunsaturated). These analyses showed that the rapid derivatization method (MeOH/KOH) identified the same number of fatty acids as the Hexane/MeOH/MeOH-BF3 method in the lipid extract from the egusi pudding, whereas the Hexane/MeOH/MeOH-BF3 method identified four more fatty acids in the lipid extract coming from Tetracarpidium conophorum. Although the number of fatty acids was similar, the derivatization method influenced the nature of the fatty acids in the egusi pudding lipid extract. Overall, polyunsaturated fatty acids were the most abundant in the different oils. Omega-3 were the majority subclass in Tetracarpidium conophorum nuts, while omega-6 were in egusi pudding. The derivatization method did not influence the majority fatty acid (alpha linolenic) in Tetracarpidium conophorum nuts, whereas derivatization with BF3 gave trans linoleic and KOH cis linoleic in egusi pudding. These results show that the choice of derivatization method for fatty acid profiling and quantification is very important and depends on the technique and extraction solvents used.

6.
Nat Prod Res ; : 1-7, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666529

RESUMO

The volatile profile of Mentha longifolia was observed using GC-MS, GC-FID, FT-IR and 13CNMR. Twenty-two constituents were found to be present in this essential oil, accounting 96.04 (%) of total essential oil and oxegenated monoterpenes were major class of compounds. The key constituents of this essential oil were pieritenone oxide (45.9%), piperitone (17.5%), beta caryophyllene (10.2%), and Germacrene D (5.0%). FT-IR showed peak at 1669 and 1707 cm-1 which may be due to the presence of carbonyl groups. Among the tested compounds, Germacrene D showed highest binding affinity value of -6.8 kcal mol-1 and a pKi value of 6.01. The dsc studies revealed that boiling point of this EO is above 200 °C. Microplate Alamar Blue assay (MABA) was carried out for the assessment of antimycobacterial activity using isoniazid and nicotinic as reference compound and oil was found to be active within conc. range of 0.8-1.6 µg/mL against mycobacterium tuberculosis, hence can act as a potential candidate against antituberculosis.

7.
Foods ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472917

RESUMO

In this study, the fatty acids and elemental profiles of 53 pork cut samples were determined. To offer insights into their potential health implications, we computed 18 key nutritional indices. These indices included parameters such as saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), unsaturated fatty acids (UFAs), the MUFAs/SFAs ratio, PUFAs/SFAs ratio, atherogenic index (AI), thrombogenic index (TI), the hypocholesterolemic to hypercholesterolemic ratio (h/H), health-promoting index (HPI), hypocholesterolemic index (HI), unsaturation index (UI), saturation index (SI), peroxidizability index (PI), nutritional value index (NVI), hypocholesterolemic index of fatty acids (DFAs), hypercholesterolemic index of fatty acids (OFAs), and the DFAs/OFAs ratio. These indices were calculated based on their fatty acid composition to provide comprehensive nutritional information. A health risk assessment revealed the safety and minimum health risk for the population from consuming the investigated pork cuts using the Target Hazard Quotient (THQ), Hazard Index (HI), and target cancer risk (TR). The ANOVA test showed significant differences in the levels of K, Fe, Mn, Zn, MUFAs, and AI among the pork cut samples. It was noted that by employing the correlation between the fatty acids profile, nutritional indices, and elemental concentrations and an unsupervised statistical method, such as PCA, a perfect separation from the different pork cuts could not be obtained.

8.
J Cannabis Res ; 6(1): 11, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461280

RESUMO

BACKGROUND: Cannabis policies have changed drastically over the last few years with many states enacting medical cannabis laws, and some authorizing recreational use; all against federal laws. As a result, cannabis products are marketed in dispensaries in different forms, most abundantly as flowers intended for smoking and sometimes vaping. All samples used in this study were obtained directly from law enforcement. The sample collection process was facilitated and funded by the National Marijuana Initiative (NMI), part of the High-Intensity Drug Trafficking Area (HIDTA) program. This initial report focuses on cannabis flowers. Similar studies with other cannabis products will be the subject of a future report. METHODS: A total of 107 Δ9-THC cannabis flower samples were collected by law enforcement from adult commercial use cannabis dispensaries, located in three different states (Colorado, Oregon, and California) and analyzed in this study for cannabinoid concentration. Samples were analyzed by GC-FID following our previously published procedure. DISCUSSION: The label claims for total Δ9-THC content ranged from 12.04 to 58.20% w/w, while GC-FID results showed a concentration ranging from 12.95 to 36.55% w/w. Of the evaluated 107 products, only 32 samples have Δ9-THC content within ± 20% of the labeled content. However, the remaining 75 samples were found to be out of the ± 20% acceptance criteria. The degree of agreement for the tested samples using ± 20% tolerance with label claims was only 30%. The results of this study indicate that there is a need for more stringent regulations to ensure that product labeling is accurate, as 70% of the evaluated products did not meet the ± 20% acceptance criteria. This highlights the importance of healthcare professionals and patients being vigilant about the Δ9-THC content, as inaccurate labeling of cannabis products could potentially result in adverse health effects. Furthermore, there is a pressing need for more rigorous regulation of commercial cannabis products in the United States.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38466777

RESUMO

Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (µ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 µg L-1-500 µg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.


Assuntos
Análise de Alimentos , Contaminação de Alimentos , Líquidos Iônicos , Nanopartículas de Magnetita , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Contaminação de Alimentos/análise , Nanopartículas de Magnetita/química , Líquidos Iônicos/química , Microextração em Fase Sólida , Extração em Fase Sólida , Chá/química , Polímeros/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-38507391

RESUMO

PGPR is an emulsifier (E476) widely used in the food industry. In this study, a gas chromatography-flame ionisation detection (GC-FID) method was developed for the quantitative characterisation of the polyglycerol composition of PGPR. The method was validated to analyse quantitatively the polyglycerol species in neat PGPR products and in PGPR samples present in a lipid matrix. This method consists of saponification, acidification and petroleum ether extraction to remove interfering fatty acids, neutralisation, silylation and finally GC-FID analysis. Phenyl ß-D-glucopyranoside was used as internal standard as sorbitol proved unsuitable due to its susceptibility to interference from Na/K chloride during silylation. The response factors of glycerol and diglycerol towards phenyl ß-D-glucopyranoside were determined using pure standards, while response factors of polyglycerols with a degree of polymerisation of at least 3 could be reliably estimated according to an effective carbon number (ECN) approach. The validity of the method applied to PGPR samples was further supported on the basis of a mass balance considering the experimentally determined polyglycerol and fatty acid content. Moreover, recoveries of di-, tri-, tetra- and pentaglycerol were more than 95% for various PGPR samples added to two different lipid matrices at 2 wt% and 5 wt% concentrations. Furthermore, the method proved to be very repeatable (with relative standard deviation values below 2.2%). On the other hand, the inevitable presence of glycerol in the lipid samples caused fouling of the detector and column overloading, requiring frequent cleaning of the detector and trimming off part of the column.


Assuntos
Glicerol , Lipídeos , Polímeros , Glicerol/análise , Glicerol/análogos & derivados , Polímeros/química , Cromatografia Gasosa , Lipídeos/análise , Lipídeos/química , Ácidos Ricinoleicos/análise , Ácidos Ricinoleicos/química , Ionização de Chama
11.
Data Brief ; 53: 110209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419767

RESUMO

Aquilaria oil, specifically agarwood oil, is esteemed for its unique fragrance and potential therapeutic qualities, primarily attributed to the presence of significant chemical compounds. These compounds play a vital role in shaping the quality and attributes of Aquilaria oil. The distinct aroma, characterized by intricate, woody, and multifaceted notes, originates directly from specific sesquiterpenes, with notable contributors like agarospirol defining this aromatic profile. The richness and complexity of the oil's scent are closely linked to the concentration and variety of noteworthy compounds within it. Oils containing a diverse range of sesquiterpenes are often considered superior, providing a more refined olfactory experience. This dataset presents a statistical analysis of the chemical compounds present in agarwood oil obtained through the hydrodistillation method from three distinct Aquilaria (A.) species: A. crassna, A. malaccensis, and A. subintegra. The analysis of these chemical compounds utilized Gas Chromatography-Mass Spectrometer (GC-MS) coupled with Gas Chromatography - Flame Ionization Detector (GC-FID). This study's data is crucial for highlighting compounds that contribute to the significance of agarwood oil as a valuable and versatile natural resource. This significance is emphasized by the oil's diverse applications and distinctive chemical composition.

12.
Methods Mol Biol ; 2772: 137-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411811

RESUMO

Plant ER membranes are the major site of biosynthesis of several lipid families (phospholipids, sphingolipids, neutral lipids such as sterols and triacylglycerols). The structural diversity of lipids presents considerable challenges to comprehensive lipid analysis. This chapter will briefly review the various biosynthetic pathways and will detail several aspects of the lipid analysis: lipid extraction, handling, separation, detection, identification, and data presentation. The different tools/approaches used for lipid analysis will also be discussed in relation to the studies to be carried out on lipid metabolism and function.


Assuntos
Lipidômica , Lipídeos de Membrana , Metabolismo dos Lipídeos , Esteróis , Fosfolipídeos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38376759

RESUMO

Ethanol is the most commonly encountered substance in forensic toxicology. Determining blood alcohol concentration (BAC) in autopsies accounts for the majority of work in forensic diagnosis. The most common method to assess BAC is the enzymatic oxidation method because of its low cost, easy operation, and high throughput. Still, the elevated lactate and lactate dehydrogenase (LDH) levels in postmortem blood may affect accuracy. This study uses headspace gas chromatography with a flame ionization detector (HS-GC/FID) to assess the interference of lactate and LDH levels on BAC in 110 autopsied blood samples determined by the enzymatic oxidation method. The results showed that lactate and LDH levels in postmortem blood were higher than in normal blood. There was a weak correlation between the lactate levels and BAC difference (r = 0.23, p < 0.05) and a strong correlation between LDH levels and BAC difference (r = 0.67, p < 0.001). The differentiation of BAC between the enzymatic oxidation method and HS-GC/FID was significant (p < 0.001), confirming the interference significantly. All postmortem blood samples with lactate and LDH levels higher than regular lead to a positive error in determining BAC by enzymatic oxidation method. The study results suggest that the HS-GC/FID method should be used to determine BAC in postmortem blood samples instead of the enzymatic oxidation method to avoid mistakes in forensic diagnosis.

14.
J Forensic Sci ; 69(3): 974-985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317608

RESUMO

Ethanol is the psychoactive substance identified most frequently in post-mortem specimens. Unfortunately, interpreting post-mortem ethanol concentrations can be difficult because of post-mortem alcohol redistribution and the possibility of post-mortem alcohol neogenesis. Indeed, in the time interval between death and sample collection, the decedent may be exposed to non-controlled environments for an extended period, promoting microbial colonization. Many authors report that in the presence of carbohydrates and other biomolecules, various species of bacteria, yeast, and fungi can synthesize ethanol and other volatile substances in vitro and in vivo. The aim of this study was to study the impact of several variables on microbial ethanol production as well as develop a mathematical model that could estimate the microbial-produced ethanol in correlation with the most significant consensual produced higher alcohol, 1-propanol. An experimental setup was developed using human blood samples and cadaveric fragments incubated under strictly anaerobic conditions to produce a novel substrate, "cadaveric putrefactive blood" mimicking post-mortem corpse conditions. The samples were analyzed daily for ethanol and 1-propanol using an HS-GC-FID validated method. The formation of ethanol was evaluated considering different parameters such as putrefactive stage, blood glucose concentration, storage temperature, and storage time. Statistical analysis was performed using the Mann-Whitney non-parametric test and simple linear regression. The results indicate that the early putrefactive stage, high blood glucose concentration, high temperature, and time of incubation increase microbial ethanol production. In addition, the developed mathematical equation confirms the feasibility of using 1-propanol as a marker of post-mortem ethanol production.


Assuntos
1-Propanol , Etanol , Mudanças Depois da Morte , Estudo de Prova de Conceito , Humanos , Etanol/análise , Manejo de Espécimes , Cromatografia Gasosa , Biomarcadores/análise , Biomarcadores/metabolismo , Depressores do Sistema Nervoso Central/análise , Toxicologia Forense , Concentração Alcoólica no Sangue , Cadáver , Temperatura , Modelos Teóricos , Ionização de Chama
15.
Turk J Pharm Sci ; 20(6): 397-404, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38257845

RESUMO

Objectives: Post-marketing/surveillance studies show that most of the many vegetable oils that are sold with health-promoting claims or statements with high nutritional values and are beneficial against diseases are off-limits of related monographs/criteria. Defining the oil with a fast, cheap, and efficient analytical method is needed to express fatty acids in any herbal product to authenticate, trace, specify, and classify the content.The majority of the after marketing/surveillance studies shows that most of the many vegetable oils that are sold with health-promoting claims or statements with high nutritional values and are beneficial against diseases are off-limits of related monographs/criteria. Defining the oil with fast, cheap and efficient analytical method to express fatty acids in any herbal product, to authenticate, trace, specify and classify the content is needed. Materials and Methods: Here, we define a new simple tool with a headspace single drop microextraction (HS-SDME) method coupled with a gas chromatography-flame ionization detector (GC-FID) for the analysis of common fatty acids (FAs) in oils. Linolenic acid, γ-linolenic acid, and linoleic acid in olive oil, thyme oil, and fish oil were determined. Derivatization was performed with 0.2 mL of 2 mol/L KOH in methanol to transfer the FAs of oils into their methyl esters (FAMEs). Then, FAMEs were extracted using a head space single drop, which is 2.0 µL of sodium dodecyl sulfate:1-butanol (1:3, v/v) mixture. Results: The most suitable extraction condition was that 360 µL of the FAMEs, 2.0 mL vial, 0.07 g NaCl as a salting-out effect, 45 °C extraction temperature, and 35 min extraction time. The precision of the method was below 12%, with accuracy validated by the GC-FID reference method.The most suitable extraction condition was that 360 µL of the fatty acid methyl esters (FAMEs), 2.0 mL vial, 0.07 g NaCl as a salting-out effect, 45 °C extraction temperature, and 35 min extraction time. The precision of the method was below 12% with an accuracy validated by the GC-FID reference method. Conclusion: The HS-SDME can be used effectively for extracting FAs from oils for improved analysis of other FAs. The method is of direct importance and relevance for the herbal, pharmaceutical, and cosmetics industries.The HS-SDME can be used for effectively for extracting fatty acids from oils for improved analysis of other fatty acids while the method is direct importance and relevance for herbal, pharmaceutical, cosmetics industry.

16.
Antibiotics (Basel) ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247600

RESUMO

Plants of the genus Prangos are intensively investigated as potential new sources of bioactive isolated products. In this work, the chemical composition of volatile constituents (essential oils and headspace volatiles) and dichloromethane extracts, as well as antimicrobial and antibiofilm activities of essential oils and MFDEs (methanol fractions of dichloromethane extracts) of Prangos trifida from Serbia, were investigated. Volatiles of roots, leaves, stems and fruits, and fatty acids and phytosterols in dichloromethane extracts of roots and fruits were analyzed by GC-FID-MS, whereas coumarins in MFDEs by LC-MS and some isolated coumarins by 1H-NMR. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations/minimum fungicidal concentrations (MBCs/MFCs) of essential oils and MFDEs were determined against 13 microorganisms. Antibiofilm activity was assessed against four microorganisms. Additionally, congo red and ergosterol binding assays were conducted to elucidate selected mechanisms of antibiofilm action in the case of Candida albicans. Total of 52 volatile constituents, 16 fatty acids, eight phytosterols and 10 coumarins were identified. Essential oils demonstrated significant activity, surpassing that of commercial food preservatives, against six tested molds from the Aspergillus, Penicillium and Trichoderma genera, as well as against bacteria Staphylococcus aureus and Bacillus cereus. Most of the oils strongly inhibited the formation of biofilms by S. aureus, Listeria monocytogenes and Escherichia coli. MFDEs exhibited noteworthy effects against B. cereus and the tested Aspergillus species, particularly A. niger, and significantly inhibited C. albicans biofilm formation. This inhibition was linked to a marked reduction in exopolysaccharide production, while antifungal mechanisms associated with ergosterol remained unaffected.

17.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176352

RESUMO

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Humanos , Óleo Mineral/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Hidrocarbonetos/análise , Terpenos/análise
18.
Metabolites ; 13(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999203

RESUMO

Short-chain fatty acids (SCFAs) are metabolites produced by the gut microbiota through the fermentation of non-digestible carbohydrates. Recent studies suggest that the gut microbiota composition, diet and metabolic status play an important role in the production of SCFAs. The primary objective of this study was to develop a simplified method for SCFA analysis in human fecal samples by gas chromatography with flame ionization detection (GC-FID). The secondary objective was to apply the method to fecal samples collected from a clinical trial. The developed GC-FID method showed excellent linearity (R2 > 0.99994), with a limit of detection (LOD) ranging from 0.02 to 0.23 µg/mL and a limit of quantification (LOQ) ranging from 0.08 to 0.78 µg/mL. Recovery for the method ranged between 54.24 ± 1.17% and 140.94 ± 2.10%. Intra- and inter-day repeatability ranged from 0.56 to 1.03 and from 0.10 to 4.76% RSD, respectively. Nine SCFAs were identified and quantified (acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, 4-methyl valeric, hexanoic and heptanoic acids) in freeze-dried fecal samples. The clinical trial compared participants with prediabetes mellitus and insulin resistance (IR-group, n = 20) to metabolically healthy participants (reference group, R-group, n = 9) following a 4-week intervention of a daily red raspberry smoothie (RRB, 1 cup fresh-weight equivalent) with or without fructo-oligosaccharide (RRB + FOS, 1 cup RRB + 8 g FOS). The statistical analysis (Student's t-test, ANCOVA) was performed on PC-SAS 9.4 (SAS Institute). Acetic acid was higher in the R-group compared to the IR-group at baseline/week 0 (p = 0.14). No significant changes in fecal SCFA content were observed after 4 weeks of either RRB or RRB + FOS.

19.
Phytochem Anal ; 34(8): 903-924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37963411

RESUMO

INTRODUCTION: Cannabinoids are a group of compounds that bind to cannabinoid receptors. They possess pharmacological properties like that of the plant Cannabis sativa. Gas chromatography (GC) is one of the popular chromatographic techniques that has been routinely used in the analysis of cannabinoids in different matrices. OBJECTIVE: The article aims to review the literature on the application of GC-based analytical methods for the analysis of phytocannabinoids published during the period from January 2020 to August 2023. METHODOLOGY: A thorough literature search was conducted using different databases, like Web of Knowledge, PubMed, Google Scholar, and other relevant published materials including published books. The keywords used, in various combinations, with cannabinoids being present in all combinations, in the search were cannabinoids, Cannabis sativa, marijuana, analysis, GC, quantitative, qualitative, and quality control. From the search results, only the publications that incorporate the GC analysis of phytocannabinoids were reviewed, and papers on synthetic cannabinoids were excluded. RESULTS: Since the publication of the review article on GC analysis of phytocannabinoids in early 2020, several GC-based methods for the analysis of phytocannabinoids have appeared in the literature. While simple 1D GC-mass spectrometry (MS) and GC-flame ionisation detector (FID) methods are still quite common in phytocannabinoids analysis, 2D GC-MS and GC-MS/MS are increasingly becoming popular, as these techniques offer more useful data for identification and quantification of phytocannabinoids in various matrices. The use of automation in sample preparation and the utilisation of mathematical and computational models for optimisation of different protocols have become a norm in phytocannabinoids analysis. Pre-analyses have been found to incorporate different derivatisation techniques and environmentally friendly extraction protocols. CONCLUSIONS: GC-based analysis of phytocannabinoids, especially using GC-MS, remains one of the most preferred methods for the analysis of these compounds. New derivatisation methods, ionisation techniques, mathematical models, and computational approaches for method optimisation have been introduced.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Canabinoides/análise , Cannabis/química
20.
MethodsX ; 11: 102387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786837

RESUMO

Distilled spirits can be very complex in their sensory or organoleptic compounds. Of significant interest is determination of the concentration of methanol, ethyl acetate, and fusel oils, which include n-propanol, isobutanol, n-butanol, active amyl (2-methyl-1-butanol) and isoamyl (3-methyl-1-butanol) alcohols. Here, we describe a validated method for the analysis of these analytes using a headspace (HS) sampling unit coupled with a gas chromatograph fitted with a flame ionization detector (GC/FID) for profiling these analytes in distilled spirits (n = 26) obtained from local retailers. HS results were compared to the direct injection (DI) GC/FID protocol made available by the US Alcohol and Tobacco Tax and Trade Bureau (TTB), method SSD:TM:200 via correlation and Bland-Altman difference plots to demonstrate that HS-GC/FID is a valid alternative to the direct injection protocols described elsewhere. •A method for the analysis of methanol, ethyl acetate, and fusel oils via headspace sampling coupled to a gas chromatograph fitted with a flame ionization detector (HS-GC/FID) is described.•Samples required no pre-treatment beyond diluting 1 mL of distilled spirit in 4 mL water containing table salt, which resulted in a method with minimal inlet or column maintenance, little sample prepration, and a rapid run time with retention times under 7 min.•Validation by comparing to established protocols using direct injection made available by the US Federal Tax and Trade Bureau (TTB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...