Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Sci Rep ; 14(1): 15619, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972876

RESUMO

H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Masculino , Pessoa de Meia-Idade , Feminino , Mucosa Gástrica/microbiologia , Adulto , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Idoso
2.
World J Gastroenterol ; 30(24): 3123-3125, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38983955

RESUMO

Immune-related adverse events (irAEs) are complications of the use of immune checkpoint inhibitors (ICIs). ICI-associated gastritis is one of the main irAEs. The gastric microbiota is often related to the occurrence and development of many gastric diseases. Gastric microbiota adjustment may be used to treat gastric disorders in the future. Faecal microbiota transplantation can alter the gut microbiota of patients and has been used for treating ICI-associated colitis. Therefore, we propose gastric microbiota transplantation as a supplementary treatment for patients with ICI-associated gastritis who do not respond well to conventional therapy.


Assuntos
Transplante de Microbiota Fecal , Gastrite , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Humanos , Transplante de Microbiota Fecal/métodos , Transplante de Microbiota Fecal/efeitos adversos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Mucosa Gástrica/efeitos dos fármacos , Gastrite/microbiologia , Gastrite/imunologia , Gastrite/terapia , Gastrite/induzido quimicamente , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/efeitos adversos , Estômago/microbiologia , Estômago/imunologia , Estômago/cirurgia , Resultado do Tratamento
3.
Front Nutr ; 11: 1426358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978704

RESUMO

Introduction: Many probiotics have the ability to produce extracellular polysaccharides (EPS). EPS derived from these probiotics has been confirmed to regulate the host intestinal microecological balance and alleviate the symptoms of diseases caused by gastrointestinal microecological imbalance. Results: Lactic acid bacteria (LAB) strain with good exopolysaccharide (EPS) producing ability, namely, Lacticaseibacillus paracasei ZFM54 (L. paracasei ZFM54) was screened. The fermentation conditions of L. paracasei ZFM54 for EPS production were optimized. The EPS54 was characterized by chemical component and monosaccharide composition determination, UV, FT-IR and NMR spectra analysis. Cango red, SEM, AFM and XRD analysis were conducted to characterize the structure of EPS54. The EPS54 effectively reduced the colonization of Helicobacter pylori to AGS cells and recovered the cell morphology. EPS54 could also effectively alleviate the gastritis in the H. pylori-infected mice by down-regulating the mRNA expression levels of pro-inflammatory cytokines IL-6, IL-8, IL-1ß and TNF-α and up-regulating the mRNA expression of inflammatory cytokine IL-10 in gastric cells. EPS54 was also found to be able to positively regulate the structure of gastric microbiota. Conclusion: The EPS 54 from L. paracasei ZFM54 can alleviate gastritis in H. pylori-infected mice by modulating the gastric microbiota.

4.
Front Microbiol ; 15: 1448265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983629

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2024.1406526.].

5.
Cell Oncol (Dordr) ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963518

RESUMO

PURPOSE: As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis. METHODS: Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches. RESULTS: The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer. CONCLUSION: The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.

6.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999928

RESUMO

Autoimmune atrophic gastritis is an immune-mediated disease resulting in autoimmune destruction of the specialized acid-producing gastric parietal cells. As a consequence, in autoimmune atrophic gastritis, gastric acid secretion is irreversibly impaired, and the resulting hypochlorhydria leads to the main clinical manifestations and is linked, directly or indirectly, to the long-term neoplastic complications of this disease. In the last few years, autoimmune atrophic gastritis has gained growing interest leading to the acquisition of new knowledge on different aspects of this disorder. Although reliable serological biomarkers are available and gastrointestinal endoscopy techniques have substantially evolved, the diagnosis of autoimmune atrophic gastritis is still affected by a considerable delay and relies on histopathological assessment of gastric biopsies. One of the reasons for the diagnostic delay is that the clinical presentations of autoimmune atrophic gastritis giving rise to clinical suspicion are very different, ranging from hematological to neurological-psychiatric up to gastrointestinal and less commonly to gynecological-obstetric symptoms or signs. Therefore, patients with autoimmune atrophic gastritis often seek advice from physicians of other medical specialties than gastroenterologists, thus underlining the need for increased awareness of this disease in a broad medical and scientific community.


Assuntos
Acloridria , Doenças Autoimunes , Gastrite Atrófica , Humanos , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Gastrite Atrófica/patologia , Acloridria/metabolismo , Biomarcadores
7.
Antibiotics (Basel) ; 13(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927151

RESUMO

Gastric cancer (GC) still represents one of the leading causes of cancer-related mortality and is a major public health issue worldwide. Understanding the etiopathogenetic mechanisms behind GC development holds immense potential to revolutionize patients' treatment and prognosis. Within the complex web of genetic predispositions and environmental factors, the connection between Helicobacter pylori (H. pylori) and gastric microbiota emerges as a focus of intense research investigation. According to the most recent hypotheses, H. pylori triggers inflammatory responses and molecular alterations in gastric mucosa, while non-Helicobacter microbiota modulates disease progression. In this review, we analyze the current state of the literature on the relationship between H. pylori and non-Helicobacter gastric microbiota in gastric carcinogenesis, highlighting the mechanisms by which microecological dysbiosis can contribute to the malignant transformation of the mucosa.

8.
mSystems ; 9(7): e0008924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38940519

RESUMO

The gastric microbial community plays a fundamental role in gastric cancer (GC), and the two main anatomical subtypes of GC, non-cardia and cardia GC, are associated with different risk factors (Helicobacter pylori for non-cardia GC). To decipher the different microbial spatial communities of GC, we performed a multicenter retrospective analysis to characterize the gastric microbiota in 223 GC patients, including H. pylori-positive or -negative patients, with tumors and paired adjacent normal tissues, using third-generation sequencing. In the independent validation cohort, both dental plaque and GC tumoral tissue samples were collected and sequenced. The prevalence of H. pylori and oral-associated bacteria was verified using fluorescence in situ hybridization (FISH) assays in GC tumoral tissues and matched nontumoral tissues. We found that the vertical distribution of the gastric microbiota, at the upper, middle, and lower third sites of GC, was likely an important factor causing microbial diversity in GC tumor tissues. The oral-associated microbiota cluster, which included Veillonella parvula, Streptococcus oralis, and Prevotella intermedia, was more abundant in the upper third of the GC. However, H. pylori was more abundant in the lower third of the GC and exhibited a significantly high degree of microbial correlation. The oral-associated microbiota module was co-exclusive with H. pylori in the lower third site of the GC tumoral tissue. Importantly, H. pylori-negative GC patients with oral-associated gastric microbiota showed worse overall survival, while the increase in microbial abundance in H. pylori-positive GC patients showed no difference in overall survival. The prevalence of V. parvula in both the dental plaque and GC tissue samples was concordant in the independent validation phase. We showed that the oral-associated species V. parvula and S. oralis were correlated with overall survival. Our study highlights the roles of the oral-associated microbiota in the upper third of the GC. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for H. pylori-negative GCs. IMPORTANCE: Our study highlights the roles of the oral-associated microbiota in the upper third of gastric cancer (GC).We showed that the oral-associated species Veillonella parvula and Streptococcus oralis were correlated with overall survival. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for Helicobacter pylori-negative GCs.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/patologia , Microbioma Gastrointestinal/genética , Boca/microbiologia , Microbiota/genética
9.
Front Microbiol ; 15: 1406526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812681

RESUMO

Objectives: The study aims to systematically identify the alterations in gut microbiota that observed in gastric cancer through comprehensive assessment of case-control studies. Methods: The systematic literature search of PubMed, Embase, Cochrane Library, and Web of Science was conducted to identify case-control studies that compared the microbiomes of individuals with and without gastric cancer. Quality of included studies was evaluated with the Newcastle-Ottawa Quality Assessment Scale (NOS). Meta-analyses utilized a random-effects model, and subgroup and sensitivity analyses were performed to assess study heterogeneity. All data analyses were performed using the "metan" package in Stata 17.0, and the results were described using log odds ratios (log ORs) with 95% confidence intervals (CIs). Results: A total of 33 studies involving 4,829 participants were eligible for analysis with 29 studies provided changes in α diversity and 18 studies reported ß diversity. Meta-analysis showed that only the Shannon index demonstrated statistical significance for α-diversity [-5.078 (-9.470, -0.686)]. No significant differences were observed at the phylum level, while 11 bacteria at genus-level were identified significant changed, e.g., increasing in Lactobacillus [5.474, (0.949, 9.999)] and Streptococcus [5.095, (0.293, 9.897)] and decreasing in Porphyromonas and Rothia with the same [-8.602, (-11.396, -5.808)]. Sensitivity analysis indicated that the changes of 9 bacterial genus were robust. Subgroup analyses on countries revealed an increasing abundance of Helicobacter and Streptococcus in Koreans with gastric cancer, whereas those with gastric cancer from Portugal had a reduced Neisseria. Regarding the sample sources, the study observed an increase in Lactobacillus and Bacteroides in the gastric mucosa of people with gastric cancer, alongside Helicobacter and Streptococcus. However, the relative abundance of Bacteroides decreased compared to the non-gastric cancer group, which was indicated in fecal samples. Conclusion: This study identified robust changes of 9 bacterial genus in people with gastric cancer, which were country-/sample source-specific. Large-scale studies are needed to explore the mechanisms underlying these changes. Systematic Review: Unique Identifier: CRD42023437426 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023437426.

10.
Curr Issues Mol Biol ; 46(5): 4991-5009, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38785567

RESUMO

The gastric milieu, because of its very low acidic pH, is very harsh for bacterial growth. The discovery of Helicobacter pylori (H.p.) has opened a new avenue for studies on the gastric microbiota, thus indicating that the stomach is not a sterile environment. Nowadays, new technologies of bacterial identification have demonstrated the existence of other microorganisms in the gastric habitat, which play an important role in health and disease. This bacterium possesses an arsenal of compounds which enable its survival but, at the same time, damage the gastric mucosa. Toxins, such as cytotoxin-associated gene A, vacuolar cytotoxin A, lipopolysaccharides, and adhesins, determine an inflammatory status of the gastric mucosa which may become chronic, ultimately leading to a gastric carcinoma. In the initial stage, H.p. persistence alters the gastric microbiota with a condition of dysbiosis, predisposing to inflammation. Probiotics and prebiotics exhibit beneficial effects on H.p. infection, and, among them, anti-inflammatory, antioxidant, and antibacterial activities are the major ones. Moreover, the association of probiotics with prebiotics (synbiotics) to conventional anti-H.p. therapy contributes to a more efficacious eradication of the bacterium. Also, polyphenols, largely present in the vegetal kingdom, have been demonstrated to alleviate H.p.-dependent pathologies, even including the inhibition of tumorigenesis. The gastric microbiota composition in health and disease is described. Then, cellular and molecular mechanisms of H.p.-mediated damage are clarified. Finally, the use of probiotics, prebiotics, and polyphenols in experimental models and in patients infected with H.p. is discussed.

11.
12.
Heliyon ; 10(10): e31472, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818182

RESUMO

Objective: Helicobacter pylori (H. pylori) plays a major role in causing and advancing gastrointestinal illnesses. Our aim is to analyze the unique makeup and functional changes in the gastric microbiota of patients with chronic non-atrophic gastritis (CNAG), regardless of the presence of H. pylori, and to determine the potential signaling pathways. Methods: We performed metagenomic sequencing on gastric mucosa samples collected from 17 individuals with non-atrophic gastritis, comprising 6 cases were infected with H. pylori (H. pylori-infected case group) and 11 cases without (control group). The species composition was evaluated with DIAMOND software, and functional enrichment was assessed utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We analyzed antibiotic resistance patterns using the Comprehensive Antibiotic Resistance Database as a reference (CARD). Results: The presence of H. pylori colonization in CNAG patients was associated with increased diversity in the gastric microbiota. The Phylum Firmicutes was found to be less prevalent, while the Phylum Proteobacteria showed an increase. Functionally, pathways associated with metabolic pathways, including vitamins, auxiliaries, amino acid residue, carbon hydrate, and metabolic energy pathways, were enriched in CNAG patients with H. pylori infection. Additionally, antibiotic resistance genes correlated with antibiotic efflux pump were enriched. Conclusions: From a holistic genomic perspective, our findings offer fresh perspectives into the gastric microbiome among CNAG patients carrying H. pylori, which is valuable for future research on CNAG.

13.
J Microbiol Methods ; 221: 106939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653334

RESUMO

BACKGROUND: Fecal samples are commonly used for longitudinal studies of the gut lumen microbiome to track the course of response to infection or drug treatment, but no comparable method has been evaluated for longitudinal analysis of the gastric lumen microbiome in mice. Herein, a buffer flush of the stomach with a flexible gavage needle was used to collect gastric contents at one or several time points without harming the mouse. These samples were compared to samples collected by sacrifice and dissection of the mouse stomach. Microbiota from these samples were sequenced and evaluated in two ways: the composition of samples as measured by beta diversity and the richness of samples as measured by alpha diversity. Additionally, the effect of multiple sampling every two days on these metrics were studied. DNA was extracted from each of these samples and Illumina 16S rRNA gene sequencing was performed. RESULTS: First, taxonomic richness of gavage and dissection samples was compared. A greater number of taxa was detected in gavage samples than in dissection samples. Second, taxonomic richness was analyzed over time. No significant difference in taxonomic richness was observed with repeated gavage flushes. Third, a comparison was made of the taxonomic composition of samples collected by gavage versus dissection followed by a comparison of samples collected over multiple samplings. Nonmetric multidimensional scaling analysis revealed no clear differences between collection by gavage flushing or dissection. Using weighted Unifrac and Aitchison taxonomic distances between gavage and dissection samples were not significantly different from distances between gavage samples themselves, and no significant difference was found in the taxonomic composition of mice which were sampled repeatedly. Finally, relative abundances of specific identified taxa were compared, and eleven taxa were found to differ in frequency between collection methods. Using the more stringent Analysis of Composition of Microbiomes (ANCOM), seven was found to differ. Similarly, no significant differences were uncovered using these analyses over multiple samples by gastric flush. CONCLUSION: In summary, the consistency of the microbiota collected by gastric flushing recommends its use for microbiome analysis of gastric fluid similar to the use of fecal sampling to study the gut lumen microbiome.


Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S , Manejo de Espécimes , Estômago , Animais , Camundongos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Manejo de Espécimes/métodos , Estômago/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos Longitudinais , Fezes/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA/métodos , Biodiversidade , Camundongos Endogâmicos C57BL
14.
J Exp Clin Cancer Res ; 43(1): 118, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641815

RESUMO

High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.


Assuntos
Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Carcinogênese , Imunidade
15.
Gut Microbes ; 16(1): 2313770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334087

RESUMO

The widespread prevalence of Helicobacter pylori infection, particularly in China, contributes to the development of gastrointestinal diseases. Antibiotics have limitations, including adverse reactions and increased antibiotic resistance. Therefore, identification of novel gastrogenic probiotics capable of surviving the acidic gastric environment and effectively combating H. pylori infection has potential in restoring gastric microbiota homeostasis. Five novel strains of human gastrogenic Weizmannia coagulans (BCF-01-05) were isolated from healthy gastric mucosa and characterized using 16S rDNA identification. Acid resistance, H. pylori inhibition, and adherence to gastric epithelial cells were evaluated in in-vitro experiments and the molecular mechanism explored in in-vivo experiments. Among the gastric-derived W. coagulans strains, BCF-01 exhibited the strongest adhesion and H. pylori inhibition, warranting further in-vivo safety evaluation. Through 16S rRNA sequencing of a mouse model, BCF-01 was determined to significantly restore H. pylori-associated gastric dysbiosis and increase the abundance of potential probiotic bacteria. Furthermore, BCF-01 enhanced mucosal tight junction protein expression and inhibited the TLR4-NFκB-pyroptosis signaling pathway in macrophages, as demonstrated by qRT-PCR and western blotting.These findings highlight the potential of BCF-01 in the prevention and control of H. pylori infection. Specifically, treatment with BCF-01 effectively restored gastric microecology and improved H. pylori-mediated mucosal barrier destruction while reducing inflammation through inhibition of the TLR4-NFκB-pyroptosis signaling pathway in macrophages. BCF-01 is a promising alternative to traditional triple therapy for H. pylori infections, offering minimal side effects with high suitability for high-risk individuals.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Camundongos , Humanos , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like , Mucosa Gástrica/metabolismo , Controle de Infecções
16.
Clin Res Hepatol Gastroenterol ; 48(1): 102247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981222

RESUMO

BACKGROUND: Gastric Mucosa Associated Lymphoid Tissue lymphoma (GML) development is triggered by Helicobacter pylori (H. pylori) infection. Little is known about the impact of H. pylori infection on gastric microbiota. METHODS: The gastric microbiota was retrospectively investigated using 16S rRNA gene sequencing in 32 patients with untreated GML (10 H. pylori-positive and 22 H. pylori-negative), 23 with remitted and 18 refractory GML and 35 controls. Differences in microbial diversity, bacterial composition and taxonomic repartition were assessed. RESULTS: There was no change in diversity and bacterial composition between GML and control patients taking into account H. pylori status. Differential taxa analysis identified specific changes associated with H. pylori-negative GML: the abundances of Actinobacillus, Lactobacillus and Chryseobacterium were increased while the abundances of Veillonella, Atopobium, Leptotrichia, Catonella, Filifactor and Escherichia_Shigella were increased in control patients. In patients with remitted GML, the genera Haemophilus and Moraxella were significantly more abundant than in refractory patients, while Atopobium and Actinomyces were significantly more abundant in refractory patients. CONCLUSION: Detailed analysis of the gastric microbiota revealed significant changes in the bacterial composition of the gastric mucosa in patients with GML that may have a role in gastric lymphomagenesis but not any new pathobionts.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Linfoma de Zona Marginal Tipo Células B , Linfoma não Hodgkin , Microbiota , Neoplasias Gástricas , Humanos , Helicobacter pylori/genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Neoplasias Gástricas/genética , Mucosa Gástrica/microbiologia
17.
J Anim Sci Biotechnol ; 14(1): 158, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143275

RESUMO

BACKGROUND: Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS: Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS: Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION: In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.

19.
Microorganisms ; 11(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37630498

RESUMO

Gender differences and microbiota are gaining increasing attention. This study aimed to assess gender differences in gastric bacterial microbiota between subjects with healthy stomachs and those with autoimmune atrophic gastritis. This was a post hoc analysis of 52 subjects undergoing gastroscopy for dyspepsia (57.7% healthy stomach, 42.3% autoimmune atrophic gastritis). Gastric biopsies were obtained for histopathology and genomic DNA extraction. Gastric microbiota were assessed by sequencing the hypervariable regions of the 16SrRNA gene. The bacterial profile at the phylum level was reported as being in relative abundance expressed as 16SrRNA OTUs (>0.5%) and biodiversity calculated as Shannon-diversity index-H. All data were stratified for the female and male gender. Results showed that women with healthy stomachs had a higher gastric bacterial abundance and less microbial diversity compared to men. Likely due to hypochlorhydria and the non-acid intragastric environment, autoimmune atrophic gastritis seems to reset gender differences in gastric bacterial abundance and reduce biodiversity in males, showing a greater extent of dysbiosis in terms of reduced biodiversity in men. Differences between gender on taxa frequency at the phylum and genus level in healthy subjects and autoimmune atrophic gastritis were observed. The impact of these findings on the gender-specific natural history of autoimmune atrophic gastritis remains to be elucidated; in any case, gender differences should deserve attention in gastric microbiota studies.

20.
Front Microbiol ; 14: 1218395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583514

RESUMO

Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...