RESUMO
Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation of S. Typhimurium biology during infection.
Assuntos
Biofilmes , Regulação Bacteriana da Expressão Gênica , Ácido Láctico , Purinas , Salmonella typhimurium , Biofilmes/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiologia , Salmonella typhimurium/genética , Ácido Láctico/metabolismo , Purinas/metabolismo , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , VirulênciaRESUMO
BACKGROUND: The delivery of safe drinking water has high public health relevance, as reflected in the Sustainable Development Goals (SDG6). Several precautionary actions have reduced the burden associated with infectious diseases in high-income countries; however, pollution in source waters, inadequate disinfection, and premise plumbing, along with an increased awareness that intrusion in the drinking water distribution system, represents risk factors for gastrointestinal illness linked to consume of drinking water. Sporadic cases of waterborne infections are expected to be underreported since a sick person is less likely to seek healthcare for a self-limiting gastrointestinal infection. Hence, knowledge on the true burden of waterborne diseases is scarce. The primary aim with the present study was to estimate the risk of gastrointestinal illness associated with drinking tap water in Norway. METHODS: We conducted a 12-month prospective cohort study where participants were recruited by telephone interview after invitation based on randomised selection. A start up e-survey were followed by 12 monthly SMS questionnaires to gather information on participants characteristics and drinking tap water (number of 0.2L glasses per day), incidence, duration and symptoms associated with gastrointestinal illness. Associations between the exposure of drinking tap water and the outcome of risk of acute gastrointestinal illness (AGI) were analysed with linear mixed effects models. Age, sex, education level and size of the drinking water supply were identified as potential confounders and included in the adjusted model. RESULTS: In total, 9,946 persons participated in this cohort study, accounting for 11.5% of all invited participants. According to the data per person and month (99,446 monthly submissions), AGI was reported for 5,508 person-months (5.5 per 100 person-months). Severe AGI was reported in 819 person-months (0.8 per 100 person-months). Our study estimates that 2-4% of AGI in Norway is attributable to drinking tap water. CONCLUSIONS: This is the largest cohort study in Norway estimating the burden of self-reported gastrointestinal infections linked to the amount of tap water drunk in Norway. The data indicate that waterborne AGI is not currently a burden in Norway, but the findings need to be used with caution. The importance of continued efforts and investments in the maintenance of drinking water supplies in Norway to address the low burden of sporadic waterborne cases and to prevent future outbreaks needs to be emphasised.
Assuntos
Água Potável , Gastroenteropatias , Humanos , Noruega/epidemiologia , Masculino , Feminino , Estudos Prospectivos , Adulto , Pessoa de Meia-Idade , Gastroenteropatias/epidemiologia , Gastroenteropatias/etiologia , Adulto Jovem , Idoso , Adolescente , Medição de Risco , Fatores de Risco , Doenças Transmitidas pela Água/epidemiologia , Inquéritos e Questionários , Abastecimento de ÁguaRESUMO
Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.
Assuntos
Doenças dos Bovinos , Salmonelose Animal , Salmonella enterica , Sorogrupo , Bovinos , Animais , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Salmonelose Animal/microbiologia , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Biofilmes/crescimento & desenvolvimento , Wisconsin , Virulência , Estresse Fisiológico , Antibacterianos/farmacologiaRESUMO
Dengue virus (DENV), from the Flaviviridae family, is the causative agent of dengue fever and poses a significant global health challenge. The virus primarily affects the vascular system and liver; however, a growing body of evidence suggests its involvement in the gastrointestinal (GI) tract, contributing to clinical symptoms such as abdominal pain, vomiting, and diarrhea. However, the mechanisms underlying DENV infection in the digestive system remain largely unexplored. Prior research has detected viral RNA in the GI tissue of infected animals; however, whether the dengue virus can directly infect human enterocytes remains unclear. In this study, we examine the infectivity of human intestinal cell lines to the dengue virus and their subsequent response. We report that the Caco-2 cell line, a model of human enterocytes, is susceptible to infection and capable of producing viruses. Notably, differentiated Caco-2 cells exhibited a lower infection rate yet a higher level of virus production than their undifferentiated counterparts. These findings suggest that human intestinal cells are a viable target for the dengue virus, potentially elucidating the GI symptoms observed in dengue fever and offering a new perspective on the pathogenetic mechanisms of the virus.
Assuntos
Diferenciação Celular , Vírus da Dengue , Dengue , Enterócitos , Humanos , Células CACO-2 , Vírus da Dengue/fisiologia , Vírus da Dengue/patogenicidade , Enterócitos/virologia , Dengue/virologia , Replicação Viral , RNA Viral/genéticaRESUMO
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Assuntos
Glutationa , Interleucina 22 , Interleucinas , Mitocôndrias , Células Th17 , Animais , Interleucinas/metabolismo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Células Th17/metabolismo , Células Th17/imunologia , Camundongos , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Citrobacter rodentium , Intestinos/patologia , Intestinos/imunologia , Inflamação/metabolismo , Inflamação/patologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologiaRESUMO
Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE: The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.
Assuntos
Criptosporidiose , Cryptosporidium , Células Epiteliais , Criptosporidiose/parasitologia , Animais , Células Epiteliais/parasitologia , Cryptosporidium/genética , Cryptosporidium/fisiologia , Camundongos , Mucosa Intestinal/parasitologia , Apoptose , Humanos , Proliferação de Células , Movimento Celular , Intestino Delgado/parasitologiaRESUMO
This study focuses on the genomic characterization of a multidrug-resistant Escherichia coli strain responsible for a severe gastrointestinal infection in a 33-year-old male. The patient initially received sulfamethoxazole/trimethoprim treatment, which proved ineffective. Fecal culture confirmed the presence of E. coli displaying a MDR profile to ampicillin, nalidixic acid, ciprofloxacin, sulfamethoxazole, trimethoprim, and tetracycline. Serotyping identified the strain as ONT:H19. Virulence analysis indicated a highly virulent profile with numerous virulence markers. Plasmid analysis uncovered various plasmids carrying both antimicrobial resistance and virulence genes. MLST assigned the strain to ST10955. Phylogenomic analysis revealed similarity to an older Brazilian isolate, suggesting the persistence of a common lineage with evolving antimicrobial resistance. This report highlights the first identification of a multidrug-resistant ST10955 E. coli strain with a wide resistome and virulence potential, emphasizing the importance of ongoing surveillance of E. coli strains due to their potential for severe infections, resistance development, and virulence.
Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Genoma Bacteriano , Filogenia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/diagnóstico , Adulto , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fezes/microbiologia , Plasmídeos/genética , Tipagem de Sequências Multilocus , Fatores de Virulência/genética , Gastroenteropatias/microbiologia , Gastroenteropatias/diagnóstico , Virulência/genética , Sorotipagem , BrasilRESUMO
Certain Escherichia coli (E. coli) strains are attaching and effacing (A/E) lesion pathogens that primarily infect intestinal epithelial cells. They cause actin restructuring and polymerization within the host cell to create an actin-rich protrusion below the site of adherence, termed the pedestal. Although there is clarity on the pathways initiating pedestal formation, the underlying purpose(s) of the pedestal remains ambiguous. The conservation of pedestal-forming activity across multiple pathogens and redundancy in formation pathways indicate a pathogenic advantage. However, few decisive conclusions have been drawn, given that the results vary between model systems. Some research argues that the pedestal increases the colonization capability of the bacterium. These studies utilize A/E pathogens specifically deficient in pedestal formation to evaluate adhesion and intestinal colonization following infection. There have been many proposed mechanisms for the colonization benefit conferred by the pedestal. One suggested benefit is that the pedestal allows for direct cytosolic anchoring through incorporation of the established host cortical actin, causing a stable link between the pathogen and cell structure. The pedestal may confer enhanced motility, as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are better able to migrate on the surface of host cells and infect neighboring cells in the presence of the pedestal. Additionally, some research suggests that the pedestal improves effector delivery. This review will investigate the purpose of pedestal formation using evidence from recent literature and will critically evaluate the methodology and model systems. Most importantly, we will contextualize the proposed functions to reconcile potential synergistic effects.
Assuntos
Aderência Bacteriana , Infecções por Escherichia coli , Escherichia coli , Humanos , Aderência Bacteriana/fisiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Actinas/metabolismo , Animais , Interações Hospedeiro-Patógeno , Células Epiteliais/microbiologiaRESUMO
Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , SARS-CoV-2 , Virulência , Macaca mulattaRESUMO
The emergence of drug-resistant bacteria makes antibiotics inadequate to treat bacterial infections, which is now a global problem. Phage as a virus with specific recognition ability can effectively kill the bacteria, which is an efficacious antibacterial material to replace antibiotics. Phage-based hydrogels have good biocompatibility and antibacterial effect at the site of infection. Phage hydrogels have remarkable antibacterial effects on targeted bacteria because of their specific targeted bactericidal ability, but there are few reports and reviews on phage hydrogels. This paper discusses the construction method of phage-based antibacterial hydrogels (PAGs), summarizes the advantages related to PAGs and their applications in the direction of wound healing, treating bone bacterial infections, gastrointestinal infection treatment and other application, and finally gives an outlook on the development and research of PAGs.
Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bactérias , Antibacterianos , HidrogéisRESUMO
The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.
Assuntos
Brônquios , Mucosa Intestinal , Humanos , Enterócitos , Linhagem Celular , ClatrinaRESUMO
Acute gastroenteritis (AGE) is a leading cause of morbidity and mortality worldwide across all age groups that disproportionally affects young children in low- and middle-income countries and immunocompromised patients in high-income countries. Regional outbreaks of AGE are typically detected by traditional microbiological detection methods that target limited organisms and are associated with low sensitivity and lengthy time-to-results. Combined, these may result in repeat testing, imprecise or delayed treatment, and delayed recognition of outbreaks. We conducted a multi-site prospective study comparing the BioCode Gastrointestinal Pathogen Panel (BioCode GPP) for the detection of 17 common bacterial, viral, and protozoan causes of gastroenteritis with reference methods, including stool culture, enzyme immunoassays, pathogen-specific PCR assays, and sequencing. One thousand five hundred fifty-eight residual, de-identified stool samples (unpreserved stool and stool in Cary-Blair transport medium) were enrolled and tested for 11 bacterial, 3 viral, and 3 protozoan pathogens. BioCode GPP and reference methods were positive for 392 (25.2%) and 283 (18.2%) samples, respectively (P < 0.0001). In this study, the BioCode GPP and reference methods detected 69 and 65 specimens positive for Clostridioides difficile, 51 and 48 for enteroaggregative Escherichia coli, 33 and 27 for enterotoxigenic E. coli, 50 and 47 for norovirus GI/GII, and 30 and 22 for rotavirus A, respectively. The BioCode GPP showed good positive and negative agreements for each pathogen ranging from 89.5% to 100%, with overall sensitivity and specificity of 96.1% and 99.7%, post adjudication. The BioCode GPP detected >1 pathogens in 49 samples, representing 12.5% of the total 392 positive specimens. IMPORTANCE: This study highlights performance of a novel technology for timely and accurate detection and differentiation of 17 common bacterial, viral, and protozoan causes of gastroenteritis. Utilizing molecular tests such as the BioCode Gastrointestinal Pathogen Panel may improve the detection of gastrointestinal pathogens and provide actionable results, particularly for patient populations at most risk.
Assuntos
Bacteriófagos , Escherichia coli Enterotoxigênica , Gastroenterite , Norovirus , Rotavirus , Humanos , Diarreia/diagnóstico , Fezes/microbiologia , Gastroenterite/diagnóstico , Estudos Prospectivos , Sensibilidade e EspecificidadeRESUMO
Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.
Assuntos
Bacteriocinas , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Gastroenteropatias/microbiologia , Gastroenteropatias/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Faecal microbiota transplantation (FMT) has mainly been studied in quantitative research to investigate effect rates. However, there is a lack of qualitative studies to explore patient perspectives. AIM: To explore perceptions of quality of life in older patients with Clostridioides difficile infection (CDI) at least 1 week after receiving FMT. METHOD: A qualitative study examining quality of life for patients treated with FMT. FINDINGS: Patients with a permanent or transient treatment effect experienced an increase in quality of life in the physical, psychological and social domains. However, patients who did not respond to the treatment experienced negative impacts on their psychological, physical, and social domains. Although patients found the content unappealing, none had reservations about receiving the treatment. CONCLUSION: This study highlights the importance of considering the psychological, social and physical wellbeing of patients when assessing the efficacy of FMT as a treatment option for patients with CDI. It further emphasises the importance of health professionals identifying patients' individual ways of handling the disease and everyday life to improve their quality of life.
Assuntos
Infecções por Clostridium , Qualidade de Vida , Humanos , Idoso , Transplante de Microbiota Fecal , Infecções por Clostridium/terapia , Pessoal de Saúde , PacientesRESUMO
Background: This study aimed to characterize potential probiotic strains for use in dogs to prevent infectious enteropathies. Lactic acid bacteria (LAB) isolated from canine milk and colostrum were characterized according to their functional properties, including their resistance to gastrointestinal conditions, inhibitory effect against pathogens, and intestinal adhesion. Methods: The immunomodulatory effects of the strains were also analyzed in in vitro and in vivo studies. Among the strains evaluated, two LAB strains (TUCO-16 and TUCO-17) showed remarkable resistance to pH 3.0, bile salts, and pancreatin, as well as inhibitory effects against pathogenic Escherichia coli, Salmonella sp., and Clostridium perfringens. Results: The TUCO-16 and TUCO-17 strains induced a significant increase in the expression of TNF-α, IL-8, and TLR2 in canine macrophages. The oral administration of TUCO-16 and TUCO-17 strains to mice significantly augmented their resistance to pathogenic E. coli or Salmonella intestinal infections. Both canine strains reduced intestinal damage and pathogen counts in the liver and spleen and avoided their dissemination into the bloodstream. These protective effects were related to the ability of TUCO-16 and TUCO-17 strains to differentially modulate the production of IFN-γ, IFN-ß, TNF-α, IL-6, KC, MCP-1, and IL-10 in the intestinal mucosa. Conclusion: Both strains, TUCO-16 and TUCO-17, are potential probiotic candidates for improving intestinal health in dogs, particularly for their ability to inhibit the growth of Gram-negative pathogens common in gastrointestinal infections and modulate the animal's immune response. Further studies are required to effectively demonstrate the beneficial effects of TUCO-16 and TUCO-17 strains in dogs.
RESUMO
Parechovirus A (PeV-A, Parechovirus, Picornaviridae) are human pathogens associated with mild to severe gastrointestinal and respiratory diseases in young children. While several studies have investigated the association of PeV-A with human disease, little is known about its epidemiology or detection in Latin America. Between the years 2014 and 2015, a total of 200 samples were collected from Panamanian pediatric patients aged < 16 years old exhibiting symptoms associated with respiratory (n = 64), gastrointestinal (n = 68), or neurological (n = 68) diseases. These samples were gathered from patients who had previously received negative diagnoses for the main respiratory viruses, rotavirus, and neurological viruses like herpes virus, enterovirus, and cytomegalovirus. The presence of PeV-A was analyzed by real time RT-PCR.Eight positive PeV-A infections (4.0%, 95% CI: 1.7 to 7.7) were detected: two in respiratory samples (3.0%, 95% CI: 0.3 to 10.8), five in gastrointestinal samples (7.3%, 95% CI: 2.4 to 16.3), and one in cerebrospinal fluid (1.5%, 95% CI: 1.4 to 7.9). The study provides evidence of PeV-A circulation in Panama and the data collectively, remarked on the importance of considering PeV-A in the Panamanian pediatric diagnostic landscape, especially when conventional testing for more common viruses yields negative results.
Assuntos
Infecções por Enterovirus , Enterovirus , Parechovirus , Infecções por Picornaviridae , Picornaviridae , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Parechovirus/genética , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/epidemiologia , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Picornaviridae/genéticaRESUMO
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Probióticos , Humanos , Transplante de Microbiota Fecal , Probióticos/uso terapêutico , Gastroenteropatias/terapia , Diarreia , Salmonella typhimuriumRESUMO
In vitro models for culturing complex microbial communities are progressively being used to study the effects of different factors on the modeling of in vitro-cultured microorganisms. In previous work, we validated a 3D in vitro model of the human gut microbiota based on electrospun gelatin scaffolds covered with mucins. The aim of this study was to evaluate the effect of Bacillus cereus, a pathogen responsible for food poisoning diseases in humans, on the gut microbiota grown in the model. Real-time quantitative PCR and 16S ribosomal RNA-gene sequencing were performed to obtain information on microbiota composition after introducing B. cereus ATCC 14579 vegetative cells or culture supernatants. The adhesion of B. cereus to intestinal mucins was also tested. The presence of B. cereus induced important modifications in the intestinal communities. Notably, levels of Proteobacteria (particularly Escherichia coli), Lactobacillus, and Akkermansia were reduced, while abundances of Bifidobacterium and Mitsuokella increased. In addition, B. cereus was able to adhere to mucins. The results obtained from our in vitro model stress the hypothesis that B. cereus is able to colonize the intestinal mucosa by stably adhering to mucins and impacting intestinal microbial communities as an additional pathogenetic mechanism during gastrointestinal infection.