Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.362
Filtrar
1.
Synth Syst Biotechnol ; 10(1): 39-48, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39224148

RESUMO

Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.

2.
Plant Methods ; 20(1): 148, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342225

RESUMO

CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.

3.
J Exp Clin Cancer Res ; 43(1): 266, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342365

RESUMO

Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fenótipo , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Microambiente Tumoral/imunologia
4.
Front Physiol ; 15: 1475152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328831

RESUMO

Ion channels and cytoskeletal proteins in the cardiac dyad play a critical role in maintaining excitation-contraction (E-C) coupling and provide cardiac homeostasis. Functional changes in these dyad proteins, whether induced by genetic, epigenetic, metabolic, therapeutic, or environmental factors, can disrupt normal cardiac electrophysiology, leading to abnormal E-C coupling and arrhythmias. Animal models and heterologous cell cultures provide platforms to elucidate the pathogenesis of arrhythmias for basic cardiac research; however, these traditional systems do not truly reflect human cardiac electro-pathophysiology. Notably, patients with the same genetic variants of inherited channelopathies (ICC) often exhibit incomplete penetrance and variable expressivity which underscores the need to establish patient-specific disease models to comprehend the mechanistic pathways of arrhythmias and determine personalized therapies. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) inherit the genetic background of the patient and reflect the electrophysiological characteristics of the native cardiomyocytes. Thus, iPSC-CMs provide an innovative and translational pivotal platform in cardiac disease modeling and therapeutic screening. In this review, we will examine how patient-specific iPSC-CMs historically evolved to model arrhythmia syndromes in a dish, and their utility in understanding the role of specific ion channels and their functional characteristics in causing arrhythmias. We will also examine how CRISPR/Cas9 have enabled the establishment of patient-independent and variant-induced iPSC-CMs-based arrhythmia models. Next, we will examine the limitations of using human iPSC-CMs with respect to in vitro arrhythmia modeling that stems from variations in iPSCs or toxicity due to gene editing on iPSC or iPSC-CMs and explore how such hurdles are being addressed. Importantly, we will also discuss how novel 3D iPSC-CM models can better capture in vitro characteristics and how all-optical platforms provide non-invasive and high- throughput electrophysiological data that is useful for stratification of emerging arrhythmogenic variants and drug discovery. Finally, we will examine strategies to improve iPSC-CM maturity, including powerful gene editing and optogenetic tools that can introduce/modify specific ion channels in iPSC-CMs and tailor cellular and functional characteristics. We anticipate that an elegant synergy of iPSCs, novel gene editing, 3D- culture models, and all-optical platforms will offer a high-throughput template to faithfully recapitulate in vitro arrhythmogenic events necessary for personalized arrhythmia monitoring and drug screening process.

5.
EMBO J ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256561

RESUMO

The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.

6.
ACS Synth Biol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298405

RESUMO

Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine (A) to guanine (G). However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing. Here, we explored the use of a TurboCas9 nickase in an ABE to improve its genome editing activity. The resulting TurboABE exhibits amplified editing efficiency on a variety of adenine target sites without increasing off-target editing in DNA and RNA. An interesting feature of TurboABE is its ability to significantly improve the editing frequency at bases with normally inefficient editing rates in the editing window of each target DNA. Development of improved ABEs provides new possibilities for precise genetic modification of genes in living cells.

7.
Best Pract Res Clin Obstet Gynaecol ; 97: 102542, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39298891

RESUMO

Advances in ultrasound and prenatal diagnosis are leading an expansion in the options for parents whose fetus is identified with a congenital disease. Obstetric diseases such as pre-eclampsia and fetal growth restriction may also be amenable to intervention to improve maternal and neonatal outcomes. Advanced Medicinal Therapeutic Products such as stem cell, gene, enzyme and protein therapies are most commonly being investigated as the trajectory of treatment for severe genetic diseases moves toward earlier intervention. Theoretical benefits include prevention of in utero damage, smaller treatment doses compared to postnatal intervention, use of fetal circulatory shunts and induction of immune tolerance. New systematic terminology can capture adverse maternal and fetal adverse events to improve safe trial conduct. First-in-human clinical trials are now beginning to generate results with a focus on safety first and efficacy second. If successful, these trials will transform the care of fetuses with severe early-onset congenital disease.

8.
Insect Sci ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300921

RESUMO

The clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9)-mediated gene editing technology has revolutionized the study of fundamental biological questions in various insects. Diverse approaches have been developed to deliver the single-guide RNA (sgRNA) and Cas9 to the nucleus of insect embryos or oocytes to achieve gene editing, including the predominant embryonic injection methods and alternative protocols through parental ovary delivery. However, a systematic comparative study of these approaches is limited, especially within a given insect. Here, we focused on revealing the detailed differences in CRISPR/Cas9-mediated gene editing between the embryo and ovary delivery methods in the beetle Tribolium castaneum, using the cardinal and tyrosine hydroxylase (TH) as reporter genes. We demonstrated that both genes could be efficiently edited by delivering Cas9/sgRNA ribonucleoproteins to the embryos by microinjection, leading to the mutant phenotypes and indels in the target gene sites. Next, the Cas9/sgRNA complex, coupled with a nanocarrier called Branched Amphiphilic Peptide Capsules (BAPC), were delivered to the ovaries of parental females to examine the efficacy of BAPC-mediated gene editing. Although we observed that a small number of beetles' progeny targeting the cardinal exhibited the expected white-eye phenotype, unexpectedly, no target DNA indels were found following subsequent sequencing analysis. In addition, we adopted a novel approach termed "direct parental" CRISPR (DIPA-CRISPR). However, we still failed to find gene-editing events in the cardinal or TH gene-targeted insects. Our results indicate that the conventional embryonic injection of CRISPR is an effective method to initiate genome editing in T. castaneum. However, it is inefficient by the parental ovary delivery approach.

9.
Theriogenology ; 230: 121-129, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39293174

RESUMO

A priority to facilitate the application of lipofection to generate genetically modified porcine embryos and animals will be the use of zona pellucida (ZP)-intact oocytes and zygotes. Recently, our group produced genetically modified embryos by lipofection of ZP-intact oocytes during in vitro fertilization (IVF). This study investigates the effect of two commercial lipofection reagents, Lipofectamine 3000 and Lipofectamine CRISPRMAX, on embryo development and mutation efficiency in ZP-intact porcine oocytes. We compared these reagents with the electroporation method and a control group using two sgRNAs targeting the CAPN3 and CD163 genes. The detrimental effects on cleavage rates were observed in both lipofection treatments compared to the control and electroporated groups. However, blastocyst rates were higher in the Lipofectamine 3000 group than in the electroporated group for both genes. Mutation parameters varied by target gene, with Lipofectamine 3000 achieving higher mutation rates for CD163, while all groups were similar for the CAPN3 gene. Overall efficiency was similar for both lipofectamines, confirming their feasibility for use. In addition, we evaluated the effect of coincubation time (4, 8, and 24 h) on IVF outcomes, embryo development, and mutation parameters. Results indicated that an 8-h coincubation period optimized fertilization and mutation efficiency without significant toxic effects. This study demonstrates that lipofection with either Lipofectamine 3000 or CRISPRMAX during IVF is an effective method for generating genetically modified porcine embryos without the need for specialized equipment or trained personnel, with efficiencies similar to or greater than electroporation. This study also highlights the importance of optimizing reagent selection and coincubation times. There is no difference between Lipofectamine 3000 and CRISPRMAXTM in terms of embryo development and mutation efficiency, and under our experimental conditions, the optimal coincubation time with lipofectamine is 8 h.

10.
Yi Chuan ; 46(9): 690-700, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275869

RESUMO

Gene editing is a kind of genetic engineering technology that can modify the genome. In recent years, with the rapid development of molecular biotechnology, the clustered regularly interspaced short palindromic repeats associated protein system has been widely used as a powerful gene editing tool due to its high efficiency, accuracy and flexibility. The CRISPR-Cas system makes a significant contribution to different aspects of livestock production by introducing site-specific modifications such as insertions, deletions or single base replacements at specific genomic sites. In terms of sheep production applications, by establishing animal models that improve production economic traits and disease resistance, the function of key genes can be studied to accelerate the improvement of traits, thereby accelerating the improvement of traits. In this review, we summarize the mechanism and function of CRISPR-Cas system and its application in the production of reproductive traits, meat use traits, wool production traits, lactation traits and disease resistance traits of sheep and the establishment of sheep animal models.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Ovinos/genética
11.
Yi Chuan ; 46(9): 716-726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275871

RESUMO

Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Células HEK293
12.
Immunol Lett ; : 106931, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303994

RESUMO

Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplant (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.

13.
Mol Ther ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39222637

RESUMO

Chimeric antigen receptor (CAR) T cells from allogeneic donors promise "off-the-shelf" availability by overcoming challenges associated with autologous cell manufacturing. However, recipient immunologic rejection of allogeneic CAR-T cells may decrease their in vivo lifespan and limit treatment efficacy. Here, we demonstrate that the immunosuppressants rapamycin and tacrolimus effectively mitigate allorejection of HLA-mismatched CAR-T cells in immunocompetent humanized mice, extending their in vivo persistence to that of syngeneic humanized mouse-derived CAR-T cells. In turn, genetic knockout (KO) of FKBP prolyl isomerase 1A (FKBP1A), which encodes a protein targeted by both drugs, was necessary to confer CD19-specific CAR-T cells (19CAR) robust functional resistance to these immunosuppressants. FKBP1AKO 19CAR-T cells maintained potent in vitro functional profiles and controlled in vivo tumor progression similarly to untreated 19CAR-T cells. Moreover, immunosuppressant treatment averted in vivo allorejection permitting FKBP1AKO 19CAR-T cell-driven B cell aplasia. Thus, we demonstrate that genome engineering enables immunosuppressant treatment to improve the therapeutic potential of universal donor-derived CAR-T cells.

14.
Front Bioeng Biotechnol ; 12: 1395772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219618

RESUMO

Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased ß-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.

15.
Immunotargets Ther ; 13: 413-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219644

RESUMO

The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment.

16.
Mol Ther Nucleic Acids ; 35(3): 102278, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39220269

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.

17.
Chemistry ; : e202402485, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225329

RESUMO

Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial in its progression. To satisfy their high proliferation and aggressiveness, cancer cell always plunders large amounts of nutrition and releases various signals to the surrounding, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cell and TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, with the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterials strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at a genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.

18.
Transl Lung Cancer Res ; 13(8): 2067-2081, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39263032

RESUMO

Background and Objective: Lung cancer remains a leading cause of cancer-related mortality globally, with drug resistance posing a significant challenge to effective treatment. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9) technology offers a novel and precise gene-editing technology for targeting and negating drug resistance mechanisms in lung cancer. This review summarizes the research progress in the use of CRISPR-Cas9 technology for investigating and managing drug resistance in lung cancer treatment. Methods: A literature search was conducted using the Web of Science and PubMed databases, with the following keywords: [CRISPR-Cas9], [lung cancer], [drug resistance], [gene editing], and [gene therapy]. The search was limited to articles published in English from 2002 to September 2023. From the search results, studies that utilized CRISPR-Cas9 technology in the context of lung cancer drug resistance were selected for further analysis and summarize. Key Content and Findings: CRISPR-Cas9 technology enables precise DNA-sequence editing, allowing for the targeted addition, deletion, or modification of genes. It has been applied to investigate drug resistance in lung cancer by focusing on key genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein 53 (TP53), and B-cell lymphoma/leukemia-2 (BCL2), among others. The technology has shown potential in inhibiting tumor growth, repairing mutations, and enhancing the sensitivity of cancer cells to chemotherapy. Additionally, CRISPR-Cas9 has been used to identify novel key genes and molecular mechanisms contributing to drug resistance, offering new avenues for therapeutic intervention. The review also highlights the use of CRISPR-Cas9 in targeting immune escape mechanisms and the development of strategies to improve drug sensitivity. Conclusions: The CRISPR-Cas9 technology holds great promise for advancing lung cancer treatment, particularly in addressing drug resistance. The ability to precisely target and edit genes involved in resistance pathways offers a powerful tool for developing more effective and personalized therapies. While challenges remain in terms of delivery, safety, and ethical considerations, ongoing research and technological refinements are expected to further enhance the role of CRISPR-Cas9 in improving patient outcomes in lung cancer treatment.

19.
Curr Cardiol Rep ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259489

RESUMO

PURPOSE OF REVIEW: This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine. RECENT FINDINGS: Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases. The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.

20.
Biotechnol J ; 19(9): e2400415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246130

RESUMO

In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Técnicas de Inativação de Genes , Fator de Transcrição STAT1 , Humanos , Dependovirus/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células HEK293 , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...