Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891306

RESUMO

The Lanzhou lily (Lilium davidii var. unicolor) is a variant of the Sichuan lily of the lily family and is a unique Chinese 'medicinal and food' sweet lily. Somatic cell embryogenesis of Lilium has played an important role in providing technical support for germplasm conservation, bulb propagation and improvement of genetic traits. Somatic embryogenesis receptor-like kinases (SERKs) are widely distributed in plants and have been shown to play multiple roles in plant life, including growth and development, somatic embryogenesis and hormone induction. Integrating the results of KEGG enrichment, GO annotation and gene expression analysis, a lily LdSERK1 gene was cloned. The full-length open reading frame of LdSERK1 was 1875 bp, encoding 624 amino acids. The results of the phylogenetic tree analysis showed that LdSERK1 was highly similar to rice, maize and other plant SERKs. The results of the subcellular localisation in the onion epidermis suggested that the LdSERK1 protein was localised at the cell membrane. Secondly, we established the virus-induced gene-silencing (VIGS) system in lily scales, and the results of LdSERK1 silencing by Tobacco rattle virus (TRV) showed that, with the down-regulation of LdSERK1 expression, the occurrence of somatic embryogenesis and callus tissue induction in scales was significantly reduced. Finally, molecular assays from overexpression of the LdSERK1 gene in Arabidopsis showed that LdSERK1 expression was significantly enhanced in the three transgenic lines compared to the wild type, and that the probability of inducing callus tissue in seed was significantly higher than that of the wild type at a concentration of 2 mg/L 2,4-D, which was manifested by an increase in the granularity of the callus tissue.

2.
Front Plant Sci ; 15: 1366413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638359

RESUMO

In the early 1900s, mutation breeding to select varieties with desirable traits using spontaneous mutation was actively conducted around the world, including Japan. In rice, the number of fixed mutations per generation was estimated to be 1.38-2.25. Although this low mutation rate was a major problem for breeding in those days, in the modern era with the development of next-generation sequencing (NGS) technology, it was conversely considered to be an advantage for efficient gene identification. In this paper, we proposed an in silico approach using NGS to compare the whole genome sequence of a spontaneous mutant with that of a closely related strain with a nearly identical genome, to find polymorphisms that differ between them, and to identify the causal gene by predicting the functional variation of the gene caused by the polymorphism. Using this approach, we found four causal genes for the dwarf mutation, the round shape grain mutation and the awnless mutation. Three of these genes were the same as those previously reported, but one was a novel gene involved in awn formation. The novel gene was isolated from Bozu-Aikoku, a mutant of Aikoku with the awnless trait, in which nine polymorphisms were predicted to alter gene function by their whole-genome comparison. Based on the information on gene function and tissue-specific expression patterns of these candidate genes, Os03g0115700/LOC_Os03g02460, annotated as a short-chain dehydrogenase/reductase SDR family protein, is most likely to be involved in the awnless mutation. Indeed, complementation tests by transformation showed that it is involved in awn formation. Thus, this method is an effective way to accelerate genome breeding of various crop species by enabling the identification of useful genes that can be used for crop breeding with minimal effort for NGS analysis.

3.
Breed Sci ; 73(2): 168-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37404346

RESUMO

The isolation of disease resistance genes introduced from wild or related cultivated species is essential for understanding their mechanisms, spectrum and risk of breakdown. To identify target genes not included in reference genomes, genomic sequences with the target locus must be reconstructed. However, de novo assembly approaches of the entire genome, such as those used for constructing reference genomes, are complicated in higher plants. Moreover, in the autotetraploid potato, the heterozygous regions and repetitive structures located around disease resistance gene clusters fragment the genomes into short contigs, making it challenging to identify resistance genes. In this study, we report that a de novo assembly approach of a target gene-specific homozygous dihaploid developed through haploid induction was suitable for gene isolation in potatoes using the potato virus Y resistance gene Rychc as a model. The assembled contig containing Rychc-linked markers was 3.3 Mb in length and could be joined with gene location information from the fine mapping analysis. Rychc was successfully identified in a repeated island located on the distal end of the long arm of chromosome 9 as a Toll/interleukin-1 receptor-nucleotide-binding site-leucine rich repeat (TIR-NBS-LRR) type resistance gene. This approach will be practical for other gene isolation projects in potatoes.

5.
J Genet Eng Biotechnol ; 20(1): 121, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960448

RESUMO

BACKGROUND: The production of industrial enzymes such as xylanase using sufficient cost-effective substrates from potent microorganisms is considered economically feasible. Studies have reported castor cake (Ricinus communis) as the most potent and inexpensive alternative carbon source for production of xylanase C by using Aspergillus terreus (A. terreus). RESULTS: A. terreus strain RGS Eg-NRC, a local isolate from agro-wastes, was first identified by sequencing the internal transcribed spacer region of a nuclear DNA encoding gene cluster deposited in GenBank (accession number MW282328). Before optimization of xylanase production, A. terreus produced 20.23 U/g of xylanase after 7 days using castor cake as a substrate in a solid-state fermentation (SSF) system that was employed to achieve ricin detoxification and stimulate xylanase production. Physicochemical parameters for the production of xylanase were optimized by using a one-variable-at-a-time approach and two statistical methods (two-level Plackett-Burman design and central composite design, CCD). The maximum xylanase yield after optimization was increased by 12.1-fold (245 U/g). A 60-70% saturation of ammonium sulfate resulted in partially purified xylanase with a specific activity of 3.9 IU/mg protein. At 60 °C and pH 6, the partially purified xylanase had the highest activity, and the activation energy (Ea) was 23.919 kJmol. Subsequently, antioxidant capacity and cytotoxicity tests in normal Ehrlich ascites carcinoma human cells demonstrated xylooligosaccharides produced by the xylanase degradation of xylan as a potent antioxidant and moderate antitumor agent. Further investigations with sodium dodecyl sulfate polyacrylamide gel electrophoresis then determined the molecular weight of partially purified xylanase C to be 36 kDa. Based on the conserved regions, observations revealed that xylanase C belonged to the glycosyl hydrolase family 10. Next, the xylanase-encoding gene (xynC), which has an open reading frame of 981 bp and encodes a protein with 326 amino acids, was isolated, sequenced, and submitted to the NCBI GenBank database (accession number LC595779.1). Molecular docking analysis finally revealed that Glu156, Glu262, and Lys75 residues were involved in the substrate-binding and protein-ligand interaction site of modeled xylanase, with a binding affinity of -8.7 kcal. mol-1. CONCLUSION: The high production of safe and efficient xylanase could be achieved using economical materials such as Ricinus communis.

6.
Bio Protoc ; 12(9): e4409, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35800462

RESUMO

Soil-surface roots (SORs) in rice are primary roots that elongate over or near the soil surface. SORs help avoid excessive reduction of stress that occurs in paddy, such as in saline conditions. SORs may also be beneficial for rice growth in phosphorus-deficient paddy fields. Thus, SOR is a useful trait for crop adaptation to certain environmental stresses. To identify a promising genetic material showing SOR, we established methods for evaluating SOR under different growth conditions. We introduced procedures to evaluate the genetic diversity of SOR in various growth stages and conditions: the Cup method allowed us to quantify SOR at the seedling stage, and the Basket method, using a basket buried in a pot or field, is useful in quantifying SOR at the adult stage. These protocols are expected to contribute not only to the evaluation of the genetic diversity of SOR, but also the isolation of related genes in rice.

7.
Plant J ; 111(3): 625-641, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608125

RESUMO

Ribonucleotide reductases (RNRs) are essential enzymes in DNA synthesis. However, little is known about the RNRs in plants. Here, we identified a svstl1 mutant from the self-created ethyl methanesulfonate (EMS) mutant library of Setaria viridis. The mutant leaves exhibited a bleaching phenotype at the heading stage. Paraffin section analysis showed the destruction of the C4 Kranz anatomy. Transmission electron microscopy results further demonstrated the severely disturbed development of some chloroplasts. MutMap analysis revealed that the SvSTL1 gene is the primary candidate, encoding a large subunit of RNRs. Complementation experiments confirmed that SvSTL1 is responsible for the phenotype of svstl1. There are two additional RNR large subunit homologs in S. viridis, SvSTL2 and SvSTL3. To further understand the functions of these three RNR large subunit genes, a series of mutants were generated via CRISPR/Cas9 technology. In striking contrast to the finding that all three SvSTLs interact with the RNR small subunit, the phenotype varied along with the copies of chloroplast genome among different svstl single mutants: the svstl1 mutant exhibited pronounced chloroplast development and significantly fewer copies of the chloroplast genome than the svstl2 or svstl3 single mutants. These results suggested that SvSTL1 plays a major role in the optimal function of RNRs and is essential for chloroplast development. Furthermore, through the analysis of double and triple mutants, the study provides new insights into the finely tuned coordination among SvSTLs to maintain normal chloroplast development in the emerging C4 model plant S. viridis.


Assuntos
Genoma de Cloroplastos , Ribonucleotídeo Redutases , Setaria (Planta) , Cloroplastos , Folhas de Planta/genética , Ribonucleotídeo Redutases/genética , Setaria (Planta)/genética
8.
Physiol Mol Biol Plants ; 27(2): 223-235, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33707865

RESUMO

The full length Andrographis paniculate 4-hydroxy 3-methyl 2-butenyl 4-diphosphate reductase (ApHDR) gene of MEP pathway was isolated for the first time. The ApHDR ORF with 1404 bp flanked by 100 bp 5'UTR and 235 bp 3'UTR encoding 467 amino acids (NCBI accession number: MK503970) and cloned in pET 102, transformed and expressed in E. coli BL21. The ApHDR protein physico-chemical properties, secondary and tertiary structure were analyzed. The Ramachandran plot showed 93.8% amino acids in the allowed regions, suggesting high reliability. The cluster of 16 ligands for binding site in ApHDR involved six amino acid residues having 5-8 ligands. The Fe-S cluster binding site was formed with three conserved residues of cysteine at positions C123, C214, C251 of ApHDR. The substrate HMBPP and inhibitors clomazone, paraquat, benzyl viologen's interactions with ApHDR were also assessed using docking. The affinity of Fe-S cluster binding to the cleft was found similar to HMBPP. The HPLC analysis of different type of tissue (plant parts) revealed highest andrographolide content in young leaves followed by mature leaves, stems and roots. The differential expression profile of ApHDR suggested a significant variation in the expression pattern among different tissues such as mature leaves, young leaves, stem and roots. A 16-fold higher expression of ApHDR was observed in the mature leaves of A. paniculata as compared to roots. The young leaves and stem showed 5.5 fold and fourfold higher expression than roots of A. paniculata. Our result generated new genomic information on ApHDR which may open up prospects of manipulation for enhanced diterpene lactone andrographolide production in A. paniculata. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00952-0.

10.
Mol Biol Rep ; 47(3): 2171-2179, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32065325

RESUMO

Saffron is the world highest-priced spice because its production requires intensive hand labour. Reduce saffron production costs require containerised plant production under controlled conditions and expand the flowering period. Controlling the flowering process and identify the factors involved in saffron flowering is crucial to introduce technical improvements. The research carried out so far in saffron has allowed an extensive knowledge of the influence of temperature on the flower induction, but the molecular mechanisms controlling flowering induction processes are largely unknown. The present study is the first conducted to isolate and characterize a regulator gene of saffron floral induction the Short Vegetative Phase (SVP) gene, which represses the floral initiation genes in the temperature response pathway, which involved in saffron flower induction. The results obtained from both phylogenetic analysis and T-coffee alignment confirms that the isolated sequence belongs to the SVP gene clades of MADS-box gene family. Gene expression analysis in different developmental stages revealed the highest expression of SVP transcript (CsSVP) during the dormancy and the vegetative stages, but decrease when flower development initiated and it was the least in late September when flower primordia are developed. Furthermore, its expression increased in the apical bud when corms are storage at 9-10 ºC, thus inhibiting flower induction. Additionally, comparison of the CsSVP transcript in apical buds from big and small corms, differing in their flowering capacity, indicates that the CsSVP transcript is present only in vegetative buds. Taken together, these results suggested inhibitory role of the SVP gene.


Assuntos
Crocus/genética , Crocus/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Temperatura , Sequência de Bases , Crocus/classificação , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Desenvolvimento Vegetal/genética
11.
Mol Biol Rep ; 47(1): 639-654, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31781917

RESUMO

3-Hydroxy-3-methylglutaryl-coenzymeA reductase (HMGR), the first rate-limiting enzyme of Mevalonate (MVA) pathway was isolated from Andrographis paniculata (ApHMGR) and expressed in bacterial cells. Full length ApHMGR (1937 bp) was submitted to NCBI with accession number MG271748.1. The open reading frame (ORF) was flanked by a 31-bp 5'-UTR, 118-bp 3'-UTR and ApHMGR contained a 1787 bp ORF encoding protein of 595 amino acids. ApHMGR protein was approximately 64 kDa, with isoelectric point of 5.75. Isolated ApHMGR was cloned into pET102 vector and expressed in E. coli BL21 (DE 3) cells, and characterized by SDS-PAGE. HPLC analysis for andrographolide content in leaf, stem and root of A. paniculata revealed highest in leaf tissue. The expression patterns of ApHMGR in different plant tissues using qRT-PCR revealed high in root tissue correlating with HPLC data. Three dimensional (3D) structural model of ApHMGR displayed 90% of the amino acids in most favored regions of the Ramachandran plot with 93% overall quality factor. ApHMGR was highly conserved with plant specific N-terminal membrane domains and C-terminal catalytic regions. Phylogenetic analysis showed A. paniculata sharing common ancestor with Handroanthus impetiginosus. 3D model of ApHMGR was screened for the interaction with substrates NADPH, HMG CoA and inhibitor using Auto Dock Vina. In silico analysis revealed that full length ApHMGR had extensive similarities to other plant HMGRs. The present communication reports the isolation of full length HMGR from A. paniculata, its heterologous expression in bacterial cells and in silico structural and functional characterization providing valuable genomic information for future molecular interventions.


Assuntos
Andrographis , Hidroximetilglutaril-CoA Redutases , Proteínas de Plantas , Andrographis/classificação , Andrographis/enzimologia , Andrographis/genética , Andrographis/metabolismo , DNA de Plantas/análise , DNA de Plantas/genética , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
3 Biotech ; 9(3): 104, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800615

RESUMO

Six full-length gene and cDNA sequences of defensin were identified from Lens culinaris L. plant. The identified genes and cDNAs were different in length and their coding sequences contained Knot1 functional domain. Phylogenetic analysis classified the identified defensins into two subfamilies. All defensin genes contained only one intron and had extracellular signal peptides. Secondary structures of identified defensins were completely composed of alpha helix and beta strand. Presence of conserved Cys amino acids and disulfide bridges, interaction with defense and signaling proteins and antimicrobial activity were other common features of these peptides. The identified defensins displayed differential expression pattern in the various tissues. The highest expression level of defensins was observed in seed, pod, and root tissues. Defensin 4 was significantly expressed in all examined tissues, whereas the other defensins were only expressed in some tissues. Also, in the fungal and wounding treatments, lentil defensins showed different expression pattern. Defensin 1 was up-regulated in both fungal and wounding treatments. Defensin 4 showed decreased expression level in both fungal and wounding treatments. Defensins 2 and 6 were up-regulated in wounding and fungal treatments, respectively. In this study, for the first time, six defensin genes were isolated and characterized from lentil. Our results highlighted the role of defensins in lentil plant that can be used for future studies.

13.
J Appl Microbiol ; 124(6): 1454-1468, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29405500

RESUMO

AIMS: Isolate and characterize a laccase-encoding gene (lac I) of Phlebia brevispora BAFC 633, as well as cloning and expressing cDNA of lac I in Pichia pastoris. And to obtain a purified and characterized recombinant laccase to analyse the biotechnological application potential. METHODS AND RESULTS: Lac I was cloned and sequenced, it contains 2447 pb obtained by PCR and long-distance inverse PCR. Upstream of the structural region of the laccase gene, response elements such as metals, antioxidants, copper, nitrogen and heat shock were found. The coding region consisted of a 1563-pb ORF encoding 521 amino acids. Lac I was functionally expressed in P. pastoris and it was shown that the gene cloned using the α-factor signal peptide was more efficient than the native signal sequence, in directing the secretion of the recombinant protein. Km and highest kcat /Km values towards ABTS, followed by 2,6-dimethylphenol, were similar to other laccases. Lac I showed tolerance to NaCl and solvents, and nine synthetic dyes could be degraded to different degrees. CONCLUSIONS: Lac I-encoding gene could be successfully sequenced having cis-acting elements located at the regulatory region. It was found that lac I cDNA expressed in P. pastoris using the α-factor signal peptide was more efficient than the native signal sequence. The purified Lac I exhibited high tolerance towards NaCl and various solvents and degraded some recalcitrant synthetic dyes. SIGNIFICANCE AND IMPACT OF THE STUDY: The cis-acting elements may be involved in the transcriptional regulation of laccase gene expression. These results may provide a further insight into potential ways of optimizing fermentation process and also open new frontiers for engineering strong promoters for laccase production. The Lac I stability in chloride and solvents and broad decolorization of synthetic dyes are important for its use in organic synthesis work and degradation of dyes from textile effluents respectively.


Assuntos
Proteínas Fúngicas/genética , Lacase/genética , Lignina/metabolismo , Polyporales/enzimologia , Clonagem Molecular , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Expressão Gênica , Cinética , Lacase/química , Lacase/isolamento & purificação , Lacase/metabolismo , Pichia/genética , Pichia/metabolismo , Reação em Cadeia da Polimerase , Polyporales/química , Polyporales/genética , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Biochem Mol Biol Educ ; 46(1): 47-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131478

RESUMO

Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the isolation and characterization of many plant resistance gene analogues (RGAs), is featured in the development of a series of laboratory experiments using important molecular biology techniques. A set of previously isolated RGA sequences is used as the model for performing sequence alignment and visualising 3D protein structure using current bioinformatics programs (Clustal Omega and Argusdock software). A pair of established degenerate primer sequences is provided for the prediction of targeted amino acids sequences in the RGAs. Reverse transcription-polymerase chain reaction (RT-PCR) is used to amplify RGAs from total RNA samples extracted from the tropical wild relative of black pepper, Piper colubrinum (Piperaceae). This laboratory exercise enables students to correlate specific DNA sequences with respective amino acid codes and the interaction between conserved motifs of resistance genes with putatively targeted proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):47-53, 2018.


Assuntos
Motivos de Aminoácidos/genética , Primers do DNA/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Piper/genética , Proteínas/genética , Ensino , Biologia Computacional/educação , Laboratórios , Leucina/genética , Piper/química , Estrutura Secundária de Proteína , Proteínas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software
15.
Methods Mol Biol ; 1398: 235-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26867628

RESUMO

Screening for tolerance traits in plant cell cultures can combine the efficiency of microbial selection and plant genetics. Agrobacterium-mediated transformation can efficiently introduce cDNA library to cell suspension cultures generating population of randomly transformed microcolonies. Transformed cultures can subsequently be screened for tolerance to different stress conditions such as salinity, high osmotic, or oxidative stress conditions. cDNA inserts in tolerant cell lines can be easily identified by PCR amplification and homology search of the determined nucleotide sequences. The described methods have been tested and used to identify regulatory genes controlling salt tolerance in Arabidopsis. As cDNA libraries can be prepared from any plants, natural diversity can be explored by using extremophile plants as gene source.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Secas , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Salinidade , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/farmacologia , Transformação Genética/genética
16.
Enzyme Microb Technol ; 58-59: 1-7, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24731818

RESUMO

Here we describe the identification, purification and characterisation of glycosylated yellow laccase proteins from the basidiomycete fungus Stropharia aeruginosa. Biochemical characterisation of two yellow laccases, Yel1p and Yel3p, show that they are both secreted, monomeric, N-glycosylated proteins of molecular weight around 55kDa with substrate specificities typical of laccases, but lacking the absorption band at 612nm typical of the blue laccase proteins. Low coverage, high throughput 454 transcriptome sequencing in combination with inverse-PCR was used to identify cDNA sequences. One of the cDNA sequences has been assigned to the Yel1p protein on the basis of identity between the translated protein sequence and the peptide data from the purified protein, and the full length gene sequence has been obtained. Biochemical properties, substrate specificities and protein sequence data have been used to discuss the unusual spectroscopic properties of S. aeruginosa proteins in the context of recent theories about the differences between yellow and blue laccases.


Assuntos
Agaricales/enzimologia , Proteínas Fúngicas/isolamento & purificação , Glicoproteínas/isolamento & purificação , Lacase/isolamento & purificação , Agaricales/genética , Sequência de Aminoácidos , Sequência de Bases , Cromatografia , Clonagem Molecular , DNA Complementar/genética , DNA Fúngico/genética , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Biblioteca Gênica , Genes Fúngicos , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Lacase/química , Lacase/classificação , Lacase/genética , Dados de Sequência Molecular , Peso Molecular , Processamento de Proteína Pós-Traducional , RNA Fúngico/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...