Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.079
Filtrar
1.
Genes Genomics ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088190

RESUMO

BACKGROUND: Transposable elements (TEs) contribute to approximately half of the human genome, and along with many other functions, they have been known to play a role in gene regulation in the genome. With TEs' active/repressed states varying across tissue and cell types, they have the potential to regulate gene expression in a tissue-specific manner. OBJECTIVE AND METHODS: To provide a systematic analysis of TEs' contribution in tissue-specific gene regulation, we examined the regulatory elements and genes in association with TE-derived regulatory sequences in 14 human cell lines belonging to 10 different tissue types using the functional genomics data from the ENCODE project. Specifically, we separately analyzed regulatory regions identified by three different approaches (DNase hypersensitive sites (DHS), histone active sites (HA), and histone repressive sites (HR)). RESULTS: These regulatory regions showed to be distinct from each other by sharing less than 2.5% among all three types and more than 95% showed to be cell line-specific. Despite a lower total TE content overall than the genome average, each regulatory sequence type showed enrichment for one or two specific TE type(s): DHS for long terminal repeats (LTRs) and DNA transposons, HA for short interspersed nucleotide elements (SINEs), and HR for LTRs. In contrast, SINE was shown to be overrepresented in all three types of regulatory sequences located in gene-neighboring regions. TE-regulated genes were mostly shown to have cell line specific pattern, and tissue-specific genes (TSGs) showed higher usage of TE regulatory sequences in the tissue of their expression. While TEs in the regulatory sequences showed to be older than their genome-wide counterparts, younger TEs were shown to be more likely used in cell line specific regulatory sequences. CONCLUSIONS: Collectively, our study provided further evidence enforcing an important contribution of TEs to tissue-specific gene regulation in humans.

2.
Bioessays ; : e2400137, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093600

RESUMO

TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.

3.
Heliyon ; 10(14): e34386, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108895

RESUMO

Background: Children with severe asthma suffer from recurrent symptoms and impaired quality of life despite advanced treatment. Underlying causes of severe asthma are not completely understood, although genetic mechanisms are known to be important. Objective: The aim of this study was to identify gene regulatory enhancers in leukocytes, to describe the role of these enhancers in regulating genes related to severe and mild asthma in children, and to identify known asthma-related SNPs situated in proximity to enhancers. Methods: Gene enhancers were identified and expression of enhancers and genes were measured by Cap Analysis Gene Expression (CAGE) data from peripheral blood leukocytes from children with severe asthma (n = 13), mild asthma (n = 15), and age-matched controls (n = 9). Results: From a comprehensive set of 8,289 identified enhancers, we further defined a robust sub-set of the high-confidence and most highly expressed 4,738 enhancers. Known single nucleotide polymorphisms, SNPs, related to asthma coincided with enhancers in general as well as with specific enhancer-gene interactions. Blocks of enhancer clusters were associated with genes including TGF-beta, PPAR and IL-11 signaling as well as genes related to vitamin A and D metabolism. A signature of 91 enhancers distinguished between children with severe and mild asthma as well as controls. Conclusions: Gene regulatory enhancers were identified in leukocytes with potential roles related to severe and mild asthma in children. Enhancers hosting known SNPs give the opportunity to formulate mechanistic hypotheses about the functions of these SNPs.

4.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126120

RESUMO

Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , RNA Longo não Codificante , Vaping , Humanos , Vaping/efeitos adversos , RNA Longo não Codificante/genética , Regulação da Expressão Gênica
5.
J Comput Biol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133672

RESUMO

Understanding the genetic regulation, for example, gene expressions (GEs) by copy number variations and methylations, is crucial to uncover the development and progression of complex diseases. Advancing from early studies that are mostly focused on homogeneous groups of patients, some recent studies have shifted their focus toward different patient groups, explored their commonalities and differences, and led to insightful findings. However, the analysis can be very challenging with one GE possibly regulated by multiple regulators and one regulator potentially regulating the expressions of multiple genes, leading to two distinct types of commonalities/differences in the patterns of genetic regulation. In addition, the high dimensionality of both sides of regulation poses challenges to computation. In this study, we develop a two-way fusion integrative analysis approach, which innovatively applies two fusion penalties to simultaneously identify commonalities/differences in the regulated pattern of GEs and regulating pattern of regulators, and adopt a Huber loss function to accommodate the possible data contamination. Moreover, a simple yet efficient iterative optimization algorithm is developed, which does not need to introduce any auxiliary variables and extra tuning parameters and is guaranteed to converge to a globally optimal solution. The advantages of the proposed approach are demonstrated in extensive simulations. The analysis of The Cancer Genome Atlas data on melanoma and lung cancer leads to interesting findings and satisfactory prediction performance.

6.
mSphere ; : e0043724, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140730

RESUMO

Bacteria in the genus Chlamydia are a significant health burden worldwide. They infect a wide range of vertebrate animals, including humans and domesticated animals. In humans, C. psittaci can cause zoonotic pneumonia, while C. pneumoniae causes a variety of respiratory infections. Infections with C. trachomatis cause ocular or genital infections. All chlamydial species are obligate intracellular bacteria that replicate exclusively inside of eukaryotic host cells. Chlamydial infections are dependent on a complex infection cycle that depends on transitions between specific cell forms. This cycle consists of cell forms specialized for host cell invasion, the elementary body (EB), and a form specialized for intracellular replication, the reticulate body (RB). In addition to the EB and RB, there is a transitionary cell form that mediates the transformation between the RB and the EB, the intermediate body (IB). In this study, we ectopically expressed the regulatory protein Euo and showed that high levels of expression resulted in reversible arrest of the development cycle. The arrested chlamydial cells were trapped phenotypically at an early IB stage of the cycle. These cells had exited the cell cycle but had not shifted gene expression from RB like to IB/EB like. This arrested state was dependent on continued expression of Euo. When ectopic expression was reversed, Euo levels dropped in the arrested cells which led to the repression of native Euo expression and the resumption of the developmental cycle. Our data are consistent with a model where Euo expression levels impact IB maturation to the infectious EB but not the production of the IB form. IMPORTANCE: Bacterial species in the Chlamydiales order infect a variety of vertebrate animals and are a global health concern. They cause various diseases in humans, including genital and respiratory infections. The bacteria are obligate intracellular parasites that rely on a complex infectious cycle involving multiple cell forms. All species share the same life cycle, transitioning through different states to form the infectious elementary body (EB) to spread infections to new hosts. The Euo gene, encoding a DNA-binding protein, is involved in regulating this cycle. This study showed that ectopic expression of Euo halted the cycle at an early stage. This arrest depended on continued Euo expression. When Euo expression was reversed, the developmental cycle resumed. Additionally, this study suggests that high levels of Euo expression affect the formation of the infectious EB but not the production of the cell form committed to EB formation.

7.
Plant Physiol Biochem ; 215: 109036, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128404

RESUMO

In plants, microRNAs (miRNAs) are a class of important small RNAs involved in their growth and development, and play a very significant role in regulating their tissue coloring. In this paper, the mechanisms on miRNA regulation of plant coloring are mainly reviewed from three aspects: macroscopic physiological and molecular foundations related to tissue coloring, miRNA biosynthesis and function, and specific analysis of miRNA regulation studies on leaf color, flower color, fruit color, and other tissue color formation in plants. Furthermore, we also systematically summarize the miRNA regulatory mechanisms identified on pigments biosynthesis and color formation in plants, and the regulatory mechanisms of these miRNAs mentioned on the existing researches can be divided into four main categories: directly targeting the related transcription factors, directly targeting the related structural genes, directly targeting the related long noncoding RNAs (LncRNAs) and miRNA-mediated production of trans-acting small interfering RNAs (ta-siRNAs). Together, these research results aim to provide a theoretical reference for the in-depth study of plant coloring mechanism and molecular breeding study of related plants in the future.

8.
J Biol Chem ; : 107665, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128724

RESUMO

Cellular organelles maintain areas of close apposition with other organelles at which the cytosolic gap in between them is reduced to a minimum. These membrane contact sites (MCS) are vital for organelle communication and are formed by molecular tethers that physically connect opposing membranes. Although many regulatory pathways are known to converge at MCS, a link between MCS and transcriptional regulation-the primary mechanism through which cells adapt their metabolism to environmental cues-remains largely elusive. In this study, we performed RNA-sequencing on Saccharomyces cerevisiae cells lacking tricalbin proteins (Tcb1, Tcb2, Tcb3), a family of tethering proteins that connect the endoplasmic reticulum with the plasma membrane and Golgi, to investigate if gene expression is altered when MCS are disrupted. Our results indicate that in the tcb1Δ2Δ3Δ strain, pathways responsive to a high-glucose environment, including glycolysis, fermentation, amino acid synthesis, and low-affinity glucose uptake, are upregulated. Conversely, pathways crucial during glucose depletion, such as the tricarboxylic acid (TCA) cycle, respiration, high-affinity glucose uptake, and amino acid uptake are downregulated. In addition, we demonstrate that the altered gene expression of tcb1Δ2Δ3Δ in glucose metabolism correlates with increased growth, glucose consumption, CO2 production, and ethanol generation. In conclusion, our findings reveal that tricalbin protein deletion induces a shift in gene expression patterns mimicking cellular responses to a high-glucose environment. This suggests that MCS play a role in sensing and signaling pathways that modulate gene transcription in response to glucose availability.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39132807

RESUMO

Nucleic Acid Nanocapsules (NANs) are nucleic acid nanostructures that radially display oligonucleotides on the surface of cross-linked surfactant micelles. Their chemical makeup affords the stimuli-responsive release of therapeutically active DNA-surfactant conjugates into the cells. While NANs have so far demonstrated the effective cytosolic delivery of their nucleic acid cargo, as seen indirectly by their gene regulation capabilities, there remain gaps in the molecular understanding of how this process happens. Herein, we examine the enzymatic degradation of NANs and confirm the identity of the DNA-surfactant conjugates formed by using mass spectrometry (MS). With surface enhanced (resonance) Raman spectroscopy (SE(R)RS), we also provide evidence that the energy-independent translocation of such DNA-surfactant conjugates is contingent upon their release from the NAN structure, which, when intact, otherwise buries the hydrophobic surfactant tail in its interior. Such information suggests a critical role of the surfactant in the lipid disruption capability of the DNA surfactant conjugates generated from degradation of the NANs. Using NANs made with different tail lengths (C12 and C10), we show that this mechanism likely holds true despite significant differences in the physical properties (i.e., critical micelle concentration (CMC), surfactants per micelle, Nagg) of the resultant particles (C12 and C10 NANs). While the total cellular uptake efficiencies of C12 and C10 NANs are similar, there were differences observed in their cellular distribution and localized trafficking, even after ensuring that the total concentration of DNA was the same for both particles. Ultimately, C10 NANs appeared less diffuse within cells and colocalized less with lysosomes over time, achieving more significant knockdown of the target gene investigated, suggesting more effective endosomal escape. These differences indicate that the surfactant assembly and disassembly properties, including the number of surfactants per particle and the CMC can have important implications for the cellular delivery efficacy of DNA micelles and surfactant conjugates.

10.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125685

RESUMO

Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.


Assuntos
Regulação da Expressão Gênica de Plantas , Ferro , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Folhas de Planta/metabolismo , Folhas de Planta/genética , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Simulação de Acoplamento Molecular , Poaceae/genética , Poaceae/metabolismo
11.
Transfus Med Hemother ; 51(4): 225-236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135855

RESUMO

Background: The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary: To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages: Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.


The Lewis (Le) blood group system, in contrast to the majority of blood groups, is not able to synthesize its antigens itself. It depends on the attachment of different oligosaccharides to the erythrocyte membrane, which are adsorbed from the plasma. These glycans are modified by the fucosyltransferases 2 and 3 enzymes (FUT2/3). Beside their role in defining the Lewis blood group, FUT2 and FUT3 are also known to be involved in the susceptibility and progression of various gastrointestinal pathologies, like inflammatory bowel diseases (IBD) or colorectal cancer (CRC). Even though different expression levels of FUT2 and FUT3 have been described in these malignancies, relatively little is known about the mechanisms behind their transcriptional regulation. In this review, we aim to shed light on transcription factors (TFs) responsible for FUT2 and FUT3 expression as well as on post-transcriptional regulators by the means of RNA binding proteins (RBPs) and microRNAs (miRNAs). To achieve our goal, we combined previous knowledge on FUT2 and FUT3 expression regulation with a computational analysis to predict additional novel regulators. On this way, we are able to broaden our knowledge on FUT2 and FUT3 expression regulation and consequently might be able to transfer our findings into diagnostics or therapeutics in the future.

12.
Cancer Cell Int ; 24(1): 271, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097722

RESUMO

BACKGROUND: DNA hypermethylation and hotspot mutations were frequently observed in the upstream and core promoter of telomerase reverse transcriptase (TERT), respectively, and they were associated with increased TERT expression and adverse clinical outcomes in thyroid cancer. In TERT promoter mutant cancer cells, the hypomethylated TERT mutant allele was active and the hypermethylated TERT wild-type allele was silenced. However, whether and how the upstream promoter methylation regulates TERT expression in TERT mutation-negative cells were largely unknown. METHODS: DNA demethylating agents 5-azacytidine and decitabine and a genomic locus-specific demethylation system based on dCas9-TET1 were used to assess the effects of TERT upstream promoter methylation on TERT expression, cell growth and apoptosis of thyroid cancer cells. Regulatory proteins binding to TERT promoter were identified by CRISPR affinity purification in situ of regulatory elements (CAPTURE) combined with mass spectrometry. The enrichments of selected regulatory proteins and histone modifications were evaluated by chromatin immunoprecipitation. RESULTS: The level of DNA methylation at TERT upstream promoter and expression of TERT were significantly decreased after treatment with 5-azacytidine or decitabine in TERT promoter wild-type thyroid cancer cells. Genomic locus-specific demethylation of TERT upstream promoter induced TERT downregulation, along with cell apoptosis and growth inhibition. Consistently, demethylating agents sharply inhibited the growth of thyroid cancer cells harboring hypermethylated TERT but had little effect on cells with TERT hypomethylation. Moreover, we identified that the chromatin remodeling protein CHD4 binds to methylated TERT upstream promoter and promotes its transcription by suppressing the enrichment of H3K9me3 and H3K27me3 at TERT promoter. CONCLUSIONS: This study uncovered the mechanism of promoter methylation mediated TERT activation in TERT promoter mutation-negative thyroid cancer cells and indicated TERT upstream promoter methylation as a therapeutic target for thyroid cancer.

13.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098489

RESUMO

Cow milk is rich in protein. Major cow milk proteins include casein α S1 (CSN1S1), casein α S2 (CSN1S2), casein ß (CSN2), casein kappa (CSN3), lactalbumin α (LALBA), and ß-lactoglobulin (LGB). These milk proteins are produced through gene expression in the mammary epithelial cells. Little is known about the molecular mechanism that mediates the expression of milk protein genes in cows. In this study, we tested the hypothesis that the expression of milk protein genes in cows is mediated by STAT5A, a transcription factor that is induced to bind and activate the transcription of target genes by extracellular signals such as prolactin. To circumvent the need of prolactin-responsive bovine mammary epithelial cells, we generated a plasmid that expresses a constitutively active bovine STAT5A variant, bSTAT5ACA. Transfection of the bovine mammary epithelial cell line MAC-T cells with the bSTAT5ACA expression plasmid caused a more than 100,000-fold and 600-fold increase in the expression of CSN1S1 and CSN1S2 mRNAs, respectively, compared with transfection of the wild-type bovine STAT5A (bSTAT5A) expression plasmid. Transfection of bSTAT5ACA, however, had no significant effect on the expression of CSN2, CSN3, LALBA, or LGB mRNA in MAC-T cells. Transfection of bSTAT5ACA caused a more than 260-fold and 120-fold increase in the expression of a luciferase reporter gene linked to the bovine CSN1S1 and CSN1S2 promoters in MAC-T cells, respectively, compared with that of bSTAT5A. The bovine CSN1S1 and CSN1S2 promoters each contain a putative STAT5 binding site, and gel-shift and super-shift assays confirmed bSTAT5ACA binding to both sites. These results together suggest that STAT5A plays a major role in regulating the expression of CSN1S1 and CSN1S2 genes in the bovine mammary epithelial cells and that STAT5A regulates the expression of these genes at least in part by binding to the STAT5 binding sites in their promoter regions. These results also suggest that STAT5A does not play a major role in regulating the expression of other major milk protein genes.

14.
Trends Microbiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095208

RESUMO

During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.

15.
Arch Microbiol ; 206(9): 373, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127787

RESUMO

Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Aderência Bacteriana , Óperon
16.
Clin Epigenetics ; 16(1): 104, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138531

RESUMO

BACKGROUND: The plasma metabolome reflects the physiological state of various biological processes and can serve as a proxy for disease risk. Plasma metabolite variation, influenced by genetic and epigenetic mechanisms, can also affect the cellular microenvironment and blood cell epigenetics. The interplay between the plasma metabolome and the blood cell epigenome remains elusive. In this study, we performed an epigenome-wide association study (EWAS) of 1183 plasma metabolites in 693 participants from the LifeLines-DEEP cohort and investigated the causal relationships in DNA methylation-metabolite associations using bidirectional Mendelian randomization and mediation analysis. RESULTS: After rigorously adjusting for potential confounders, including genetics, we identified five robust associations between two plasma metabolites (L-serine and glycine) and three CpG sites located in two independent genomic regions (cg14476101 and cg16246545 in PHGDH and cg02711608 in SLC1A5) at a false discovery rate of less than 0.05. Further analysis revealed a complex bidirectional relationship between plasma glycine/serine levels and DNA methylation. Moreover, we observed a strong mediating role of DNA methylation in the effect of glycine/serine on the expression of their metabolism/transport genes, with the proportion of the mediated effect ranging from 11.8 to 54.3%. This result was also replicated in an independent population-based cohort, the Rotterdam Study. To validate our findings, we conducted in vitro cell studies which confirmed the mediating role of DNA methylation in the regulation of PHGDH gene expression. CONCLUSIONS: Our findings reveal a potential feedback mechanism in which glycine and serine regulate gene expression through DNA methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Glicina , Metaboloma , Serina , Humanos , Glicina/sangue , Serina/sangue , Serina/genética , Metilação de DNA/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla/métodos , Metaboloma/genética , Epigênese Genética/genética , Pessoa de Meia-Idade , Ilhas de CpG/genética , Epigenoma/genética , Adulto , Idoso , Análise da Randomização Mendeliana
17.
Front Pharmacol ; 15: 1423416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114355

RESUMO

ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.

18.
FEMS Microbiol Lett ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118365

RESUMO

The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms re-wire their metabolism to favour these reactions and thereby mitigate acid stress. The orally-acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field including an understanding of acid-sensing mechanisms, the role of intra-species heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.

19.
Genome Biol ; 25(1): 221, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143563

RESUMO

BACKGROUND: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of the regulatory programs this variation affects can shed light on the apparatuses of human diseases. RESULTS: We collect epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we construct networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks serve as the base for a rich series of analyses, through which we demonstrate their temporal dynamics and enrichment for various disease-associated variants. We apply the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrate methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. CONCLUSIONS: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes; this includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.


Assuntos
Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Humanos , Neurogênese/genética , Diferenciação Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Modelos Genéticos , Neurônios/metabolismo
20.
Insect Mol Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049812

RESUMO

MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...