Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Nucleus ; 15(1): 2398450, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39287196

RESUMO

Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.


Assuntos
DNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Humanos , DNA/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Reparo do DNA , Replicação do DNA , Dano ao DNA , Cromatina/metabolismo
2.
Front Oncol ; 14: 1478373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328207

RESUMO

Aldehyde exposure has been shown to lead to the formation of DNA damage comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or intrastrand crosslinks. DPCs have recently drawn more attention because of recent advances in detection and quantification of these adducts. DPCs are highly deleterious to genome stability and have been shown to block replication forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent DPC-induced damage include excision repair pathways, homologous recombination, and specialized proteases involved in cleaving the covalently bound proteins from DNA. These pathways were first discovered in formaldehyde-treated cells, however, since then, various other aldehydes have been shown to induce formation of DPCs in cells. Defects in DPC repair or aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs syndrome and AMeD syndrome in humans. Here, we discuss recent developments in understanding how aldehydes form DPCs, how they are repaired, and the consequences of defects in these repair pathways.

3.
DNA Repair (Amst) ; 142: 103759, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241677

RESUMO

Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , Animais , Neoplasias/genética , Neoplasias/metabolismo , Reparo de DNA por Recombinação , Instabilidade Genômica
4.
Mol Carcinog ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254477

RESUMO

Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.

5.
Expo Health ; 16(4): 1039-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220725

RESUMO

The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-023-00609-1.

6.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273335

RESUMO

This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.


Assuntos
Instabilidade Genômica , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais
7.
Hum Genomics ; 18(1): 106, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334413

RESUMO

Spontaneous forward-reverse mutations were reported by us earlier in clinical samples from various types of cancers and in HeLa cells under normal culture conditions. To investigate the effects of chemical stimulations on such mutation cycles, the present study examined single nucleotide variations (SNVs) and copy number variations (CNVs) in HeLa and A549 cells exposed to wogonin-containing or acidic medium. In wogonin, both cell lines showed a mutation cycle during days 16-18. In acidic medium, both cell lines displayed multiple mutation cycles of different magnitudes. Genomic feature colocalization analysis suggests that CNVs tend to occur in expanded and unstable regions, and near promoters, histones, and non-coding transcription sites. Moreover, phenotypic variations in cell morphology occurred during the forward-reverse mutation cycles under both types of chemical treatments. In conclusion, chemical stresses imposed by wogonin or acidity promoted cyclic forward-reverse mutations in both HeLa and A549 cells to different extents.


Assuntos
Variações do Número de Cópias de DNA , Flavanonas , Mutação , Humanos , Células HeLa , Flavanonas/farmacologia , Variações do Número de Cópias de DNA/genética , Mutação/genética , Células A549 , Polimorfismo de Nucleotídeo Único/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral
8.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149321

RESUMO

Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.

9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125869

RESUMO

Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.


Assuntos
Replicação do DNA , Instabilidade Genômica , Helicase da Síndrome de Werner , Síndrome de Werner , Helicase da Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Humanos , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Animais , Telômero/metabolismo , Telômero/genética
10.
Proc Natl Acad Sci U S A ; 121(30): e2319574121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024113

RESUMO

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Humanos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Linhagem Celular Tumoral , Fase S/efeitos dos fármacos , Piridinas/farmacologia , Piperazinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclinas/metabolismo , Ciclinas/genética , Proteínas F-Box
11.
Artigo em Inglês | MEDLINE | ID: mdl-39052867

RESUMO

Magnesium (Mg) deficiency is associated with increased risk and malignancy in colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Here, we used genomic, proteomic, and phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomic and phosphoproteomic data indicated that low Mg content in tumors may activate epithelial-mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p upregulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction by decreasing DBN1S142p, which in turn enhanced the binding of ACTN4 to F-actin and promoted F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may be a promising preventive and therapeutic strategy for CRC.

12.
Cell Rep ; 43(7): 114472, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990716

RESUMO

In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones, providing additional layers of structural and epigenetic regulation. Here, we systematically replace individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. We show that variants H2A.J, TsH2B, and H3.5 complement their respective replicative counterparts. However, macroH2A1 fails to complement, and its overexpression is toxic in yeast, negatively interacting with yeast's native histones and kinetochore genes. To isolate yeast with macroH2A1 chromatin, we uncouple the effects of its macro and histone fold domains, revealing that both domains suffice to override native nucleosome positioning. Furthermore, both uncoupled constructs of macroH2A1 exhibit lower nucleosome occupancy, decreased short-range chromatin interactions (<20 kb), disrupted centromeric clustering, and increased chromosome instability. Our observations demonstrate that lack of a canonical histone H2A dramatically alters chromatin organization in yeast, leading to genome instability and substantial fitness defects.


Assuntos
Instabilidade Genômica , Histonas , Nucleossomos , Saccharomyces cerevisiae , Humanos , Centrômero/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38986581

RESUMO

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , RNA , Instabilidade Genômica/genética , RNA/metabolismo , RNA/genética , Replicação do DNA/genética , Animais , Humanos , Transcrição Gênica/genética
14.
Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39047733

RESUMO

BACKGROUND: Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging. METHODS: This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage. FINDINGS: We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements. CONCLUSIONS: Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders. FUNDING: M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.

15.
FEBS Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844597

RESUMO

Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.

16.
FEBS Lett ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852996

RESUMO

The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.

17.
Methods Mol Biol ; 2825: 309-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913318

RESUMO

Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Microscopia/métodos , Testes de Mutagenicidade/métodos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Mutagênicos/toxicidade , Testes para Micronúcleos/métodos
18.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38796829

RESUMO

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Assuntos
Instabilidade Genômica , RecQ Helicases , Saccharomyces cerevisiae , Transcrição Gênica , Saccharomyces cerevisiae/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Humanos , Transcrição Gênica/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
19.
Neurooncol Adv ; 6(1): vdae059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800696

RESUMO

Background: Adult-type diffuse gliomas comprise IDH (isocitrate dehydrogenase)-mutant astrocytomas, IDH-mutant 1p/19q-codeleted oligodendrogliomas (ODG), and IDH-wild-type glioblastomas (GBM). GBM displays genome instability, which may result from 2 genetic events leading to massive chromosome alterations: Chromothripsis (CT) and whole-genome duplication (WGD). These events are scarcely described in IDH-mutant gliomas. The better prognosis of the latter may be related to their genome stability compared to GBM. Methods: Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening. Survival data were compared using the Kaplan-Meier method. Results: At initial diagnosis, 37 GBM (18.7%) displayed CT versus 5 IDH-mutant gliomas (4.7%; P = .0008), the latter were all high-grade (grade 3 or 4) astrocytomas. WGD was detected at initial diagnosis in 18 GBM (9.3%) and 9 IDH-mutant gliomas (5 astrocytomas and 4 oligodendrogliomas, either low- or high-grade; 8.5%). Neither CT nor WGD was associated with overall survival in GBM or in IDH-mutant gliomas. Conclusions: CT is less frequent in IDH-mutant gliomas compared to GBM. The absence of CT in ODG and grade 2 astrocytomas might, in part, explain their genome stability and better prognosis, while CT might underlie aggressive biological behavior in some high-grade astrocytomas. WGD is a rare and early event occurring equally in IDH-mutant gliomas and GBM.

20.
FEBS Lett ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803008

RESUMO

The intricate mechanisms underlying transcription-dependent genome instability involve G-quadruplexes (G4) and R-loops. This perspective elucidates the potential link between these structures and genome instability in aging. The co-occurrence of G4 DNA and RNA-DNA hybrid structures (G-loop) underscores a complex interplay in genome regulation and instability. Here, we hypothesize that the age-related decline of sirtuin function leads to an increase in acetylated helicases that bind to G4 DNA and RNA-DNA hybrid structures, but are less efficient in resolving them. We propose that acetylated, less active, helicases induce persistent G-loop structures, promoting transcription-dependent genome instability in aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...