Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Anat ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970393

RESUMO

The nuclei are the main output structures of the cerebellum. Each and every cerebellar cortical computation reaches several areas of the brain by means of cerebellar nuclei processing and integration. Nevertheless, our knowledge of these structures is still limited compared to the cerebellar cortex. Here, we present a mouse genetic inducible fate-mapping study characterizing rhombic lip-derived glutamatergic neurons of the nuclei, the most conspicuous family of long-range cerebellar efferent neurons. Glutamatergic neurons mainly occupy dorsal and lateral territories of the lateral and interposed nuclei, as well as the entire medial nucleus. In mice, they are born starting from about embryonic day 9.5, with a peak between 10.5 and 12.5, and invade the nuclei with a lateral-to-medial progression. While some markers label a heterogeneous population of neurons sharing a common location (BRN2), others appear to be lineage specific (TBR1, LMX1a, and MEIS2). A comparative analysis of TBR1 and LMX1a distributions reveals an incomplete overlap in their expression domains, in keeping with the existence of separate efferent subpopulations. Finally, some tagged glutamatergic progenitors are not labeled by any of the markers used in this study, disclosing further complexity. Taken together, our results obtained in late embryonic nuclei shed light on the heterogeneity of the excitatory neuron pool, underlying the diversity in connectivity and functions of this largely unexplored cerebellar territory. Our findings contribute to laying the groundwork for a comprehensive functional analysis of nuclear neuron subpopulations.

2.
J Ethnopharmacol ; 334: 118529, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972528

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sinisan formula (SNSF), documented in the classic books Shanghan Lun, is known for its ability to regulate liver-qi and treat depression. However, its underlying mechanism, particularly its effects on dynamic real-time neuron activity and circuits remains to be fully elucidated. AIM OF THE STUDY: This study aimed to investigate the antidepressant effect of SNSF and its central nervous system mechanism on depression-like behaviors, focusing on the prefrontal cortex (PFC) to dorsal raphe nucleus (DRN) neural circuit in a stress-induced adolescent animal model. MATERIALS AND METHODS: SNSF comprised four herbs, the root of Bupleurum chinense DC., the root of Paeonia lactiflora Pall., the fruit of Citrus aurantium L., the rhizome of Glycyrrhiza uralensis Fisch., in equal propotions. The adolescent depression animal model was induced by maternal separation (MS) and chronic restraint stress (CRS). In-vivo multichannel physiological electrodes were implanted into the PFC on PND 28 and animals were recorded 5 times during PND 35-46. From PND 47, the behavioral tests were performed to evaluate the antidepressant efficacy of SNSF. Subsequently, brain tissue was collected for Western blot and immunofluorescence staining analysis. Retro virus was injected into the DRN to explore sources of projections received by serotonergic (5-HTergic) neurons. And the PFC-to-DRN circuit was activated or inhibited through chemogenetic techniques to investigate the effects of SNSF on depression-like behaviors. RESULTS: Administration of SNSF for 18 days effectively alleviated depression-like behaviors in MS&CRS adolescent mice. The PFC emerged as the primary glutamatergic projection source of the DRN5-HT neurons. Following SNSF administration for 13/15/18 days, there was an increase in the firing rate of excitatory neurons and excitatory/inhibitory (E/I) ratio in the PFC. MS&CRS stress let to a reduction in the density of 5-HT+ and CaMKII + neurons in the DRN, accompanied by an increase in the density of GAD + neurons in the DRN, while SNSF administration reversed the alterations. Chemogenetic activation of the PFC-to-DRN circuit rescued the depression-like behaviors induced by MS&CRS, whereas suppression of this circuit attenuated the antidepressant effect of SNSF. CONCLUSIONS: SNSF significantly mitigated depression-like behaviors in MS&CRS mice. SNSF exerts its antidepressant effects by increasing the E/I ratio in the PFC and enhancing glutamatergic projections from the PFC to the DRN.

3.
Addict Biol ; 28(10): e13321, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753567

RESUMO

The medial prefrontal cortex (mPFC) and the lateral habenula (LHb) play roles in drug addiction and cognitive functions. Our previous studies have suggested that acupuncture at Shenmen (HT7) points modulates mesolimbic reward system in order to suppress drug-induced addiction behaviours. To explore whether an mPFC-LHb circuit mediates the inhibitory effects of acupuncture on addictive behaviours, we examined the projection from mPFC to LHb, excitation of mPFC neurons during acupuncture stimulation, the effects of optogenetic modulation of mPFC-LHb on HT7 inhibition of cocaine-induced locomotion and the effect of mPFC lesion on HT7 inhibition of nucleus accumbens (NAc) dopamine release. Acupuncture was applied at bilateral HT7 points for 20 s, and locomotor activity was measured in male Sprague-Dawley rats. Although cocaine injection significantly increased locomotor activity, HT7 acupuncture suppressed the cocaine-induced locomotion. The inhibitory effect of HT7 on cocaine-enhanced locomotion was blocked by optogenetic silencing of the mPFC-LHb circuit. In vivo extracellular recordings showed that HT7 acupuncture evoked an increase in the action potentials of mPFC neurons. Optopatch experiment proved glutamatergic projections from mPFC to LHb. HT7 acupuncture suppressed NAc dopamine release following cocaine injection, which was blocked by electrolytic lesion of mPFC. These results suggest the mediation of mPFC-LHb circuit in the inhibitory effects of acupuncture on cocaine psychomotor activity in rats.


Assuntos
Terapia por Acupuntura , Cocaína , Habenula , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Dopamina , Córtex Pré-Frontal , Cocaína/farmacologia
4.
Pharmacol Res ; 172: 105857, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461223

RESUMO

Opioid relapse is generally caused by the recurrence of context-induced memory reinstatement of reward. However, the internal mechanisms that facilitate and modify these processes remain unknown. One of the key regions of the reward is the nucleus accumbens (NAc) which receives glutamatergic projections from the dorsal hippocampus CA1 (dCA1). It is not yet known whether the dCA1 projection to the NAc shell regulates the context-induced memory recall of morphine. Here, we used a common model of addiction-related behavior conditioned place preference paradigm, combined with immunofluorescence, chemogenetics, optogenetics, and electrophysiology techniques to characterize the projection of the dCA1 to the NAc shell, in context-induced relapse memory to morphine. We found that glutamatergic neurons of the dCA1 and gamma aminobutyric acidergic (GABA) neurons of the NAc shell are the key brain areas and neurons involved in the context-induced reinstatement of morphine memory. The dCA1-NAc shell glutamatergic input pathway and the excitatory synaptic transmission of the dCA1-NAc shell were enhanced via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) when mice were re-exposed to environmental cues previously associated with drug intake. Furthermore, chemogenetic and optogenetic inactivation of the dCA1-NAc shell pathway decreased the recurrence of long- and short-term morphine-paired context memory in mice. These results provided evidence that the dCA1-NAc shell glutamatergic projections mediated the context-induced memory recall of morphine.


Assuntos
Analgésicos Opioides/administração & dosagem , Região CA1 Hipocampal/citologia , Memória , Morfina/administração & dosagem , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Recompensa , Animais , Condicionamento Operante , Ácido Glutâmico , Masculino , Camundongos Endogâmicos C57BL , Dependência de Morfina/fisiopatologia , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos
5.
Int Rev Cell Mol Biol ; 336: 223-320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29413892

RESUMO

During fetal and postnatal development, the human brain generates 160 billion neuronal and glial cells, each with precise cellular phenotypes. To effectively manage such a complicated task, intrinsic (e.g., transcription factors) and extrinsic (environmental signals) cues cooperate to regulate the decision by neural progenitors to continue to proliferate or to differentiate. Loss- and gain-of-function studies in the mouse brain have been instrumental in identifying these cues, leading to a fairly well-developed and well-integrated model of neocortical development. This research has revealed that the neurons, astrocytes, and oligodendrocytes that populate the mature neocortex are generated sequentially from neural progenitor pools in both the dorsal (pallial) and ventral (subpallial) telencephalon. Understanding how cellular diversity is established during neocortical development is critical, as appropriate numbers of inhibitory and excitatory neurons, oligodendrocytes, and astrocytes are required for normal neural function. Indeed, an imbalance in excitatory vs inhibitory neurotransmission or alterations in glial cell number are hallmark features of neuropsychological and intellectual disorders such as schizophrenia, bipolar disorder, and autism. Moreover, these fundamental studies are beginning to pave the way for the rational design of neural cell reprogramming strategies, which are of value for the assessment of disease etiology, and for the possible development of novel cell-based therapies. We review herein our current understanding of the intrinsic cues and environmental signals that govern cell fate specification and differentiation decisions during development of neuronal and glial lineages in the murine neocortex.


Assuntos
Diferenciação Celular , Córtex Cerebral/citologia , Animais , Córtex Cerebral/metabolismo , Humanos , Neurogênese , Neurônios/citologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...