Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(9): 4879-4886, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39215719

RESUMO

Hydrogen (H2) is colorless, odorless, and has a wide explosive concentration range (4-75 vol %), making rapid and accurate detection of hydrogen leaks essential. This paper demonstrates a method to modify the spatial distribution of nanocrystals (NCs) by adding surfactants to improve the sensing performance. In order to explore its potential for H2 gas-sensing applications, SnO2, containing different mass percentages of PdCu NCs, was dispersed. The results show that the 0.1 wt % PdCu-SnO2 sensor based on surfactant dispersion performs well, with a response to 0.1 vol % H2 that is 18 times higher than that of the undispersed 0.1 wt % PdCu-SnO2 sensor. The enhanced gas-sensing ability after dispersion can be attributed to the fact that the uniform distribution of NCs generates higher quantum efficiency and exposes more active sites on the carrier surface compared to nonuniform distribution. This study provides a simple, novel, and effective method to improve the sensor response.


Assuntos
Hidrogênio , Nanopartículas , Compostos de Estanho , Compostos de Estanho/química , Hidrogênio/química , Hidrogênio/análise , Nanopartículas/química , Cobre/química , Paládio/química , Tensoativos/química
2.
ACS Sens ; 9(6): 3327-3337, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38863381

RESUMO

Oxide semiconductor-supported metal nanoparticles often suffer from a high-temperature gas sensing process, resulting in agglomeration and coalescence, which significantly decrease their surface activity and stability. Here, we develop an in situ pyrolysis strategy to redisperse commercial Ir particles (∼15.6 nm) into monodisperse Ir species (∼5.4 nm) on ZnO supports, exhibiting excellent sintering-resistant properties and H2 sensing. We find that large-size Ir nanoparticles can undergo an unexpected splitting decomposition process and spontaneously migrate along the encapsulated carbon layer surface during high-temperature pyrolysis of ZIF-8. This resultant monodisperse status can be integrally reserved, accompanying further oxidation sintering. The final Irred/ZnO-450-based sensor exhibits outstanding stability, H2 response (10-2000 ppm), fast response/recovery capability (7/9.7 s@100 ppm), and good moisture resistance. In situ Raman and ex situ XPS further experimentally verify that highly dispersive Ir species can promote the electron transfer process during the gas sensing process. Our strategy thus provides important insights into the design of agglomeration-resistant gas sensing materials for highly effective H2 detection.


Assuntos
Carbono , Hidrogênio , Irídio , Nanopartículas Metálicas , Pirólise , Óxido de Zinco , Hidrogênio/química , Hidrogênio/análise , Carbono/química , Nanopartículas Metálicas/química , Irídio/química , Óxido de Zinco/química
3.
Nanotechnology ; 35(1)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37607504

RESUMO

The development of sensing technologies and miniaturization allows for the development of smart systems with elevated sensing performance. Silicon-based hydrogen sensors have received a lot of attention due to its electrical conductivity and the mechanical endurance. With this motivation, we have proposed a two-terminal silicon-based device in a crossbar architecture as a hydrogen gas sensing platform. In this work, we have adopted a multi-layer modeling approach to analyze the performance of the proposed system. Technology computer-aided design models have been used to capture device performance. A gas sensor model based on hydrogen adsorption on the Palladium surface and a crossbar model has been adopted to understand the Palladium work function variation with gas pressure and the performance of the proposed crossbar system respectively. We have shown the impact of parameters like interconnect resistance and array size on the whole system's performance. Finally, a comprehensive analysis has been provided for the design rule of this architecture. A fabrication process to spur future experimental works has also been added. This work will provide computational insight into the performance of a crossbar hydrogen sensor system, optimized against some critical parameters.

4.
ACS Appl Mater Interfaces ; 14(39): 44516-44526, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162987

RESUMO

Although they are not as favorable as other influential gas sensors, metal-oxide semiconductor-based chemiresistors ensure minimal surface reactivity, restricting their gas selectivity, gas response, and reaction kinetics, particularly when functioning at room temperature (RT). A hybrid design, which includes metal-oxide/carbon nanostructures and passivation with specific gas filtration layers, can address the concerns of surface reactivity. We present a novel hierarchical nanostructured zinc oxide (ZnO), decorated with graphitic carbon (GC) and synthesized via a wet-chemical strategy, which is then followed by the self-assembly of a zeolitic imidazolate framework (ZIF-8). Because of its large surface area, high porosity, and efficient inspection of other analyte (interfering) gases, the ZnO@GC can provide intensified surface reactivity at RT. In the present study, such a hybrid sensor confirmed extraordinary gas sensing properties, which was characterized by excellent H2 selectivity, fast response, rapid recovery kinetics, and high gas response (ΔR/R0 ∼ 124.6%@10 ppm), particularly in extremely humid environments. The results reveal that adsorption sites provided by the ZIF-8 template-based ZnO@GC frameworks facilitate the adsorption and desorption of H2.

5.
ACS Appl Mater Interfaces ; 14(22): 25741-25752, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608898

RESUMO

Among transition metal oxides, MoO3 is a promising material due to its layered structure and different oxidation states, making it suitable for different device applications. One of the methods used to grow MoO3 is radio frequency magnetron sputtering (RFMS), which is the most compatible method in industry. However, obtaining nanostructures by RFMS for metal oxides is challenging because of compact morphology film formation. In this study, α-MoO3 with vertical nanowalls is obtained by a two-step process; deposition of magnetron-sputtered MoS2 vertical nanowalls and postoxidation of these structures without changing the morphology. In situ transmittance and electrical measurements are performed to control the oxidation process, which shed light on understanding the oxidation of MoS2 nanowalls. The transition from MoS2 to α-MoO3 is investigated with partially oxidized MoS2/MoO3 samples with different thicknesses. It is also concluded that oxidation starts from nanowalls perpendicular to the substrate and lasts with oxidation of basal planes. Four different thicknesses of α-MoO3 nanowall samples are fabricated for H2 gas sensors. Also, the effect of Pd deposition on the H2-sensing properties of sensors is deeply investigated. An outstanding response of 3.3 × 105 as well as the response and recovery times of 379 and 304 s, respectively, are achieved from the thinnest Pd-loaded sample. Also, the gas-sensing mechanism is explored by gasochromic measurements to investigate the sensor behaviors under the conditions of dry air and N2 gas as the carrier gas.

6.
J Colloid Interface Sci ; 597: 29-38, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33862445

RESUMO

Hydrogen (H2) molecules are easy to leak during production, storage, transportation and usage. Because of their flammability and explosive nature, quick and reliable dectection of H2 molecule is of great significance. Herein, an excellent H2 gas sensor has been realized based on Pd nanocrystal sensitized two-dimensional (2D) porous TiO2 (Pd/TiO2). The formation of 2D porous TiO2 with the removal of graphene oxide template has been monitored by an in-situ transmission electron microscope. It is found that the size of the GO template can be almost completely replicated by 2D TiO2. The Pd/TiO2 sensor exhibited an instantaneous response and a satisfactory low detection limit for H2 detection. These excellent gas-sensing performances (good selectivity, unique linearity response and high stability) can be attributed to the unique 2D porous structure and the synergistic effect between oxidized Pd and TiO2, including the unique adsorption properties of O2 or/and H2 on Pd/TiO2, the reaction between PdO and H2 gas, and the regulated depletion layer arising from p-type PdO to n-type TiO2. This work demonstrates a rational design and synthesis of highly efficient H2 sensitive materials for energy and manufacturing security.

7.
J Hazard Mater ; 301: 433-42, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410272

RESUMO

Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...