Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Heliyon ; 10(15): e35516, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170439

RESUMO

Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by progressive loss of retinal ganglion cells (RGCs) and optic nerve damage. While elevated intraocular pressure (IOP) is the only known modifiable risk factor, normal-tension glaucoma (NTG) challenges this notion, suggesting other mechanisms beyond IOP may contribute to its development. Emerging evidence support the hypothesis that glaucoma may be an autoimmune disease. This review summarizes evidence for this hypothesis, focusing on the gut-retina axis. We discuss how antigens of gut bacterial prime peripheral T cells to breach the blood-retina barrier (BRB) and initiate cross-reactivity with ocular tissues via molecular mimicry, resulting in autoimmune RGC damage. Understanding these mechanisms may uncover new diagnostic biomarkers and therapeutic strategies targeting immune pathways alongside conventional IOP-lowering treatments.

2.
Front Immunol ; 15: 1454018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136018

RESUMO

Cells exposed to stressors of various origin activate protective mechanisms that include the expression of heat shock proteins (Hsps)/molecular chaperones belonging to several families. Well-characterized inducible Hsp70 is present in all human cell-types and biological fluids, including blood, urine, and saliva. The presence of anti-Hsp70 autoantibodies in the serum of healthy individuals has already been confirmed, and their elevated titers positively correlated with the severity of several pathological conditions, including coeliac disease and dermatitis herpetiformis - a cutaneous manifestation of coeliac disease. Here, using an indirect enzyme-linked immunosorbent assay, we demonstrate, for the first time, that anti-Hsp70 autoantibodies are present in the saliva and urine of healthy individuals. Although the occurrence of anti-Hsp70 autoantibodies in the biological fluids of healthy individuals is intriguing, their physiological role is currently unknown. It is believed that antibodies reacting with self-molecules present in the serum of healthy individuals are part of natural autoantibody pool with multiple regulatory functions. On the other hand, some autoantibodies (e.g., typical of autoimmune bullous skin diseases or systemic lupus erythematosus) may be present before the onset of the disease and serve as specific predictive biomarkers. Therefore, we would like to initiate a discussion or future research direction on the use of anti-Hsp70 autoantibodies as a potential "biomarker" in the diagnosis or prediction of autoimmune diseases. Our findings can be considered in biomedical research to develop noninvasive, inexpensive and easy-to-use tests. Nevertheless, large-scale comparative studies should be initiated, involving the collection and analysis of biological samples such as saliva or urine from patients suffering from autoimmune diseases or other inflammatory or neoplastic diseases, to determine whether the levels of anti-Hsp70 autoantibodies are indeed elevated and whether they correlate with the clinical picture of any disease or established biomarkers.


Assuntos
Autoanticorpos , Proteínas de Choque Térmico HSP70 , Saliva , Humanos , Saliva/imunologia , Saliva/metabolismo , Proteínas de Choque Térmico HSP70/imunologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , Feminino , Adulto , Masculino , Biomarcadores/urina , Pessoa de Meia-Idade , Ensaio de Imunoadsorção Enzimática , Voluntários Saudáveis
3.
Sci Rep ; 14(1): 15117, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956273

RESUMO

Cancer and related disorders are the most common cause of cancer-related mortality with the incidence of 1 in 9 among the pre-menopausal Pakistani females. among the most common ailments worldwide, indicating the importance of developing particular techniques that could help attenuate the effects of breast cancer and related outcomes. The primary aim of the current study was to review the role of inflammatory and stress markers in the development and progression of breast cancer. Four hundred ninety-eight (n = 498) patients with breast cancer and four hundred and ninety-eight (n = 498) age- and sex-matched controls were selected for this case‒control study. Serum samples were obtained, and the levels of stress and inflammatory markers, including Matrix metalloproteases (MMPs), Interleukins (ILs), Heat shock proteins (HSPs), Malondialdehyde (MDA), Nitric Oxide (NO), inducible Nitric Oxide Synthase (iNOS) and Tumour necrosis factor-alpha (TNF-α), were determined. Most (62%) patients had metastatic breast cancer (stage III or IV) with an adverse grade (65% with Grade III and 35% with Grade II). The present study showed that the levels of oxidants such as MDA, ILs, MMPs and HSPs were significantly greater, while the levels of antioxidants such as Superoxide Dismutase (SOD), Glutathione (GSH), Catalase (CAT), vitamin A, C and D were significantly lower in breast cancer patients than in controls, suggesting their diagnostic importance and role in the pathophysiology of breast cancer. Oxidants, including IL-1, HSP27 and MMP9, which are highly specific and sensitive, may be used to develop the pathophysiological pathways of metastatic breast cancer in these patients. These pathways include cell invasion, cell migration and epithelial-mesenchymal transition. Therefore, we concluded that an increase in growth factors, e.g., Vascular Endothelial Growth Factor (VEGF), Tumour Growth Factor-beta (TGF-ß) and B-cell lymphoma (Bcl2), under the influence of these variables plays a crucial role in the metastasis of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Adulto , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Inflamação/sangue , Estresse Oxidativo , Malondialdeído/sangue , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo
4.
Aquat Toxicol ; 273: 107014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954870

RESUMO

In the last decades, pharmaceuticals have emerged as a new class of environmental contaminants. Antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, are of special concern due to their increased consumption over the past years. However, the available data on their putative effects on the health of aquatic animals, as well as the possible interaction with biological systems are still poorly understood. This study analysed whether and to which extent the exposure to Enalapril, an ACE inhibitor commonly used for treating hypertension and heart failure, may induce morpho-functional alterations in the mussel Mytilus galloprovincialis, a sentinel organism of water pollution. By mainly focusing on the digestive gland (DG), a target tissue used for analysing the effects of xenobiotics in mussels, the effects of 10-days exposure to 0.6 ng/L (E1) and 600 ng/L (E2) of Enalapril were investigated in terms of cell viability and volume regulation, morphology, oxidative stress, and stress protein expression and localization. Results indicated that exposure to Enalapril compromised the capacity of DG cells from the E2 group to regulate volume by limiting the ability to return to the original volume after hypoosmotic stress. This occurred without significant effects on DG cell viability. Enalapril unaffected also haemocytes viability, although an increased infiltration of haemocytes was histologically observed in DG from both groups, suggestive of an immune response. No changes were observed in the two experimental groups on expression and tissue localization of heat shock proteins 70 (HSPs70) and HSP90, and on the levels of oxidative biomarkers. Our results showed that, in M. galloprovincialis the exposure to Enalapril did not influence the oxidative status, as well as the expression and localization of stress-related proteins, while it activated an immune response and compromised the cell ability to face osmotic changes, with potential consequences on animal performance.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Enalapril , Mytilus , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Inibidores da Enzima Conversora de Angiotensina/toxicidade , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
Insects ; 15(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921175

RESUMO

Liriomyza trifolii is a significant invasive pest that targets horticultural and vegetable crops, causing large-scale outbreaks characterized by pronounced thermotolerance and insecticide resistance. This study examined the impact of long-term selection for abamectin resistance during the larval stage of L. trifolii on its population dynamics and thermal tolerance. We conducted a comprehensive comparison between the abamectin-resistant strain (AB-R) and the susceptible strain (S), including age-stage, two-sex life table analysis, thermal preference (Tpref), critical thermal maximum (CTmax), heat knockdown times (HKDTs), eclosion and survival rates, and LtHsp expression under heat stress. Our results showed that while selection for abamectin resistance was detrimental to survival and reproduction, it activated self-defense mechanisms and rapid adaptive adjustments and conferred modest thermal tolerance, which suggests a dual nature of insecticide effects. The AB-R strain exhibited significantly higher thermal preference and CTmax values, along with a longer HKDT and improved survival. Additionally, there was a significant upregulation of LtHsp expression in the AB-R strain compared to the S strain. These findings indicate that the evolution of thermal adaptation was accompanied by abamectin resistance development, emphasizing the necessity of considering temperature effects when applying chemical control. Our study provides valuable insights into how physiological acclimation may help mitigate the toxic effects of insecticides and illustrate how insects respond to multiple environmental pressures.

6.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915516

RESUMO

White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease. Despite their frequent appearance and their association with cognitive decline, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched healthy controls. Through RNA-sequencing in frontal- and occipital-WM bulk tissues, we identified an upregulation of genes associated with brain vasculature function in AD white matter. To further elucidate vasculature-specific transcriptomic features, we performed RNA-seq analysis on blood vessels isolated from these white matter regions, which revealed an upregulation of genes related to protein folding pathways. Finally, comparing gene expression profiles between AD individuals with high- versus low-WMH burden showed an increased expression of pathways associated with immune function. Taken together, our study characterizes the diverse molecular profiles of white matter changes in AD compared to normal aging and provides new mechanistic insights processes underlying AD-related WMHs.

7.
Int Microbiol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898189

RESUMO

Microbes play an essential role in soil fertility by replenishing the nutrients; they encounter various biotic and abiotic stresses disrupting their cellular homeostasis, which expedites activating a conserved signaling pathway for transient over-expression of heat shock proteins (HSPs). In the present study, a versatile soil bacterium Bacillus subtilis strain PSK.A2 was isolated and characterized. Further, the isolated bacterium was exposed with several stresses, viz., heat, salt, acid, alkaline, and antibiotics. Stress-attributed cellular morphological modifications such as swelling, shrinkage, and clump formation were observed under the scanning electron microscope. The comparative protein expression pattern was studied by SDS-PAGE, relative protein stabilization was assessed by protein aggregation assay, and relative survival was mapped by single spot dilution and colony-counting method under control, stressed, lethal, and stressed lethal conditions of the isolate. The findings demonstrated that bacterial stress tolerance was maintained via the activation of various HSPs of molecular weight ranging from 17 to 115 kD to respective stimuli. The treatment of subinhibitory dose of antibiotics not interfering protein synthesis (amoxicillin and ciprofloxacin) resulted in the expression of eight HSPs of molecular weight ranging from 18 to 71 kD. The pre-treatment of short stress dosage showed endured overall tolerance of bacterium to lethal conditions, as evidenced by moderately enhanced total soluble intracellular protein content, better protein stabilization, comparatively over-expressed HSPs, and relatively enhanced cell survival. These findings hold an opportunity for developing novel approaches towards enhancing microbial resilience in a variety of conditions, including industrial bioprocessing, environmental remediation, and infectious disease management.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38692348

RESUMO

Heat stress seriously threatens fish survival and health, demanding immediate attention. Teprenone is a gastric mucosal protective agent that can induce heat shock protein expression. This research investigated the effects of teprenone on largemouth bass (Micropterus salmoides) subjected to heat stress. Juvenile fish were assigned to different groups: group C (control group, 0 mg teprenone/kg diet), T0, T200, T400, and T800 (0, 200, 400, and 800 mg teprenone/kg diet, respectively), which were fed for 3 days, followed by a day without the diet. All groups except group C were subjected to acute heat stress (from 24 °C to 35 °C at 1 °C per hour and then maintained at 35 °C for 3 h). The results were as follows: The critical thermal maxima were significantly higher in the T200, T400, and T800 groups compared with the T0 group (P < 0.05). Heat stress caused severe damage to the tissue morphology of the liver, while teprenone significantly reduced this injury (P < 0.05). Serum cortisol concentration decreased gradually as teprenone concentration increased, and the lowest concentration was observed in the T800 group (P < 0.05). Compared with the T0 group, the serum activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase were significantly lower in the T200, T400, and T800 groups (P < 0.05). The liver activities of catalase, total superoxide dismutase, and peroxidase were significantly higher in the T200 group than in the T0 group (P < 0.05). Transcript levels of the heat shock proteins (hsp90, hsp70, hspa5, and hsf1) and caspase family (caspase3 and caspase9) in the liver of the T200 group were significantly higher than those of the T0 group (P < 0.05). Western blot results showed that HSP70 and HSPA5 in the liver were significantly upregulated in the T200 group compared with the T0 group (P < 0.05). In summary, dietary teprenone improved thermal tolerance, alleviated heat stress damage in the liver, enhanced antioxidant capacity, and upregulated heat shock proteins in juvenile largemouth bass. This study offers theoretical support for applying teprenone in aquaculture to reduce financial losses caused by abiotic factors.


Assuntos
Bass , Diterpenos , Resposta ao Choque Térmico , Fígado , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Resposta ao Choque Térmico/efeitos dos fármacos , Diterpenos/farmacologia , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Ração Animal/análise , Dieta , Termotolerância/efeitos dos fármacos
9.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722289

RESUMO

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.

10.
Mol Biol Rep ; 51(1): 491, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578469

RESUMO

BACKGROUND: This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS: We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS: The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS: Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.


Assuntos
Antineoplásicos , Nigella sativa , Óleos de Plantas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Caspase 3/genética , Metaloproteinase 2 da Matriz , Apoptose , Proteína X Associada a bcl-2 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico , Proliferação de Células , Células MCF-7
11.
Biofactors ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572919

RESUMO

Klotho is an antiaging protein that has multiple functions. The purpose of this study is to investigate whether soluble klotho plays a role in cellular stress response pathways. We found that klotho deficiency (kl-/-) largely decreased HSF1 levels and impaired heat shock protein expression. Interestingly, recombinant soluble klotho-induced HSF1 and HSPs such as HSP90, HSP70, and HSP27 in kl-/- mouse embryonic fibroblasts (MEFs). Soluble Klotho treatment also induced cell proliferation and HSF1 promoter activity in MEF kl-/- cells in a concentration-dependent manner. Furthermore, using point mutagenesis, we identified regulatory/binding sites of transcription factors EGR1 regulated by soluble klotho in the HSF1 promoter. Taken together, our findings unravel the molecular basis of klotho and provide molecular evidence supporting a direct interaction between soluble klotho and HSF1-mediated stress response pathway.

12.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542071

RESUMO

During diapause, a state of temporarily arrested development, insects require low winter temperatures to suppress their metabolism, conserve energy stores and acquire cold hardiness. A warmer winter could, thus, reduce diapause incidence and duration in many species, prematurely deplete their energy reserves and compromise post-diapause fitness. In this study, we investigated the combined effects of thermal stress and the diapause program on the expression of selected genes involved in antioxidant defense and heat shock response in the European corn borer Ostrinia nubilalis. By using qRT-PCR, it has been shown that response to chronic heat stress is characterized by raised mRNA levels of grx and trx, two important genes of the antioxidant defense system, as well as of hsp70 and, somewhat, of hsp90, two major heat shock response proteins. On the other hand, the expression of hsc70, hsp20.4 and hsp20.1 was discontinuous in the latter part of diapause, or was strongly controlled by the diapause program and refractory to heat stress, as was the case for mtn and fer, genes encoding two metal storage proteins crucial for metal ion homeostasis. This is the first time that the effects of high winter temperatures have been assessed on cold-hardy diapausing larvae and pupae of this important corn pest.


Assuntos
Diapausa , Mariposas , Animais , Antioxidantes/metabolismo , Mariposas/metabolismo , Larva/metabolismo , Diapausa/genética , Resposta ao Choque Térmico/genética
13.
Front Insect Sci ; 4: 1309941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469339

RESUMO

Mosquitoes transmit pathogens that pose a threat to millions of people globally. Unfortunately, widespread insecticide resistance makes it difficult to control these public health pests. General mechanisms of resistance, such as target site mutations or increased metabolic activity, are well established. However, many questions regarding the dynamics of these adaptations in the context of developmental and environmental conditions require additional exploration. One aspect of resistance that deserves further study is the role of heat shock proteins (HSPs) in insecticide tolerance. Studies show that mosquitoes experiencing heat stress before insecticide exposure demonstrate decreased mortality. This is similar to the observed reciprocal reduction in mortality in mosquitoes exposed to insecticide prior to heat stress. The environmental shifts associated with climate change will result in mosquitoes occupying environments with higher ambient temperatures, which could enhance existing insecticide resistance phenotypes. This physiological relationship adds a new dimension to the problem of insecticide resistance and further complicates the challenges that vector control and public health personnel face. This article reviews studies illustrating the relationship between insecticide resistance and HSPs or hsp genes as well as the intersection of thermotolerance and insecticide resistance. Further study of HSPs and insecticide resistance could lead to a deeper understanding of how environmental factors modulate the physiology of these important disease vectors to prepare for changing climatic conditions and the development of novel strategies to prevent vector-borne disease transmission.

14.
Behav Brain Funct ; 20(1): 3, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413998

RESUMO

BACKGROUND: Aging affects anxiety levels in rats while the pineal gland, via its hormone melatonin, could modulate their inherited life "clock." The present study aimed to explore the impact of plasma melatonin deficiency on anxiety responses and the possible involvement of the hypothalamic-pituitary-adrenocortical (HPA) axis and heat shock proteins (Hsp) 70 and 90 in the frontal cortex (FC) and the hippocampus in young adult, middle-aged and elderly rats with pinealectomy. RESULTS: Melatonin deficiency induced at different life stages did not affect the lifespan of rats. Pinealectomy abolished the circadian rhythm of motor activity, measured for 48 h in the actimeter, in young adult but not in middle-aged rats. Pinealectomy reduced the motor activity of the young adult rats during the dark phase and impaired the diurnal activity variations of old rats. The same generations (3- and 18 month-old rats with pinealectomy) had lower anxiety levels than the matched sham groups, measured in three tests: elevated-plus maze, light-dark test, and novelty-suppressed feeding test. While the activity of the HPA axis remained intact in young adult and middle-aged rats with melatonin deficiency, a high baseline corticosterone level and blunted stress-induced mechanism of its release were detected in the oldest rats. Age-associated reduced Hsp 70 and 90 levels in the FC but not in the hippocampus were detected. Pinealectomy diminished the expression of Hsp 70 in the FC of middle-aged rats compared to the matched sham rats. CONCLUSIONS: Our results suggest that while melatonin hormonal dysfunction impaired the motor activity in the actimeter and emotional behavior in young adult and elderly rats, the underlying pathogenic mechanism in these generations might be different and needs further verification.


Assuntos
Melatonina , Glândula Pineal , Humanos , Ratos , Animais , Pessoa de Meia-Idade , Lactente , Glândula Pineal/cirurgia , Glândula Pineal/fisiologia , Melatonina/farmacologia , Melatonina/fisiologia , Pinealectomia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Ansiedade , Atividade Motora
15.
Biochim Biophys Acta Gen Subj ; 1868(4): 130564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272191

RESUMO

Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.


Assuntos
Antioxidantes , Nitrilas , Pirazóis , Pirimidinas , Selenometionina , Animais , Embrião de Galinha , Antioxidantes/metabolismo , Galinhas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Selenometionina/farmacologia , Selenometionina/análise , Selenometionina/metabolismo , Fator de Transcrição STAT3/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-37976966

RESUMO

Liriomyza trifolii is a significant, invasive pest that damages horticultural crops and vegetables. The distribution of L. trifolii is influenced by temperature, and prior research has demonstrated that variations in thermal adaptability differ among geographic populations of the insect. Heat shock proteins (Hsps) are involved in adaptation to temperatures; however, the underlying molecular mechanism for thermal adaption in different L. trifolii populations remains unclear. This study examines the temperature adaptability of two L. trifolii populations from Hainan (HN) and Jiangsu (JS) provinces. The results indicate that the HN population has a higher survival rate and a higher critical thermal maximum (CTmax) than the JS population under high temperature stress. Transcriptome data at 42 °C revealed that the JS population has more differentially expressed genes (DEGs) than the HN population, while the HN population has more upregulated DEGs. The two populations were similar in functional annotation of DEGs, and a large number of Hsps were upregulated. However, the HN population had larger numbers and higher expression levels of Hsps during heat stress as compared to the JS population. Additionally, the expression patterns of differentially expressed Hsps varied between the HN and JS populations in response to different elevated temperatures. Notably, the transcription levels of Hsp70s were higher in the HN population as compared to the JS population, while the expression level of genes encoding small heat shock proteins was higher in the JS population. These findings have significant scientific value in understanding the underlying mechanism of temperature adaption in L. trifolii and provide a fresh perspective on the distribution of this invasive pest.


Assuntos
Dípteros , Animais , Dípteros/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura , Insetos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo
17.
Pest Manag Sci ; 80(4): 2053-2060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38131224

RESUMO

BACKGROUND: Liriomyza trifolii is an economically significant, invasive pest of horticultural and vegetable crops. The larvae form tunnels in foliage and hasten senescence and death. Outbreaks of L. trifolii often erupt in hot weather and are driven by thermotolerance; furthermore, the poor effectiveness of pesticides has made outbreaks more severe. But it is still unclear whether the development of insecticide tolerance will contribute to thermotolerance in L. trifolii. RESULTS: To explore potential synergistic relationships between insecticide exposure and thermotolerance in L. trifolii, we first generated an abamectin-resistant (AB-R) strain. Knockdown behavior, eclosion and survival rates, and expression levels of genes encoding heat shock proteins (Hsps) in L. trifolii were then examined in AB-R and abamectin-susceptible (AB-S) strains. Our results demonstrated that long-term selection pressure for abamectin resistance made L. trifolii more prone to develop cross-resistance to other insecticides containing similar ingredients. Furthermore, the AB-R strain exhibited enhanced thermotolerance and possessed an elevated critical thermal maximum temperature, and upregulated expression levels of Hsps during heat stress. CONCLUSION: Collectively, our results indicate that thermal adaptation in L. trifolii was accompanied by emerging abamectin resistance. This study provides a theoretical basis for investigating the synergistic or cross-adaptive mechanisms that insects use to cope with adversity and demonstrates the complexity of insect adaptation to environmental and chemical stress. © 2023 Society of Chemical Industry.


Assuntos
Dípteros , Inseticidas , Ivermectina/análogos & derivados , Termotolerância , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Ivermectina/farmacologia , Insetos
18.
Gene ; 893: 147912, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863300

RESUMO

Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Proteínas de Choque Térmico/metabolismo , Estresse Fisiológico/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética
19.
Mol Biol (Mosk) ; 57(6): 949-964, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062952

RESUMO

This review considers the recent progress on the role of heat shock proteins (HSPs), as well as transcription factors of heat shock proteins genes (HSFs) in protecting plants from oxidative stress induced by various types of abiotic and biotic stresses. HSPs are pleiotropic proteins involved in various intracellular processes and performing many important functions. In particular, HSPs increase plant resistance to stress by protecting the structure and activity of proteins of the antioxidant system. Overexpression of Hsp genes under stressful conditions, leading to an increased content of HSPs, can be used as a marker of oxidative stress. Plant HSFs are encoded by large gene families with variable sequences, expression and function. Plant HSFs regulate transcription of a wide range of stress-induced genes, including HSPs and other chaperones, reactive oxygen species scavengers, enzymes involved in protective metabolic reactions and osmolytic biosynthesis, or other transcriptional factors. Genome-wide analysis of Arabidopsis, rice, poplar, lettuce, and wheat revealed a complex network of interaction between the Hsps and Hsfs gene families that form plant protection against oxidative stress. Plant protection systems are discussed, with special emphasis on the role of HSPs and HSFs in plant responses to stress, which will be useful for the development of technologies to increase productivity and stress resistance of plant crops.


Assuntos
Proteínas de Choque Térmico , Fatores de Transcrição , Proteínas de Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Oxidativo/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética
20.
Adv Med Sci ; 68(2): 464-473, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37926002

RESUMO

Heat shock proteins (HSPs) represent cellular chaperones that are classified into several families, including HSP27, HSP40, HSP60, HSP70, and HSP90. The role of HSPs in the cell includes the facilitation of protein folding and maintaining protein structure. Both processes play crucial roles during stress conditions in the cell such as heat shock, degradation, and hypoxia. Moreover, HSPs are important modulators of cellular proliferation and differentiation, and are strongly associated with the molecular orchestration of carcinogenesis. The expression and/or activity of HSPs in cancer cells is generally abnormally high and is associated with increased metastatic potential and activity of cancer stem cells, more pronounced angiogenesis, downregulated apoptosis, and the resistance to anticancer therapy in many patients. Based on the mentioned reasons, HSPs have strong potential as valid diagnostic, prognostic, and therapeutic biomarkers in clinical oncology. In addition, numerous papers describe the role of HSPs as chaperones in the regulation of immune responses inside and outside the cell. Importantly, highly expressed/activated HSPs may be inhibited via immunotherapeutic targets in various types of cancers. The aim of this work is to provide a comprehensive overview of the relationship between HSPs and the tumor cell with the intention of highlighting the potential use of HSPs in personalized cancer management.


Assuntos
Proteínas de Choque Térmico , Neoplasias , Humanos , Proteínas de Choque Térmico/metabolismo , Neoplasias/diagnóstico , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...