Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135247, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222787

RESUMO

Arabinoxylan (AX) from cereals and millets have garnered attention due to the myriad of their bioactivities. Pearl millet (Pennisetum glaucum) bran, an underexplored milling by-product was used to extract AX (PMAX) by optimized alkali-assisted extraction using Response Surface Methodology and Central Composite Design, achieving a yield of 15.96 ± 0.39 % (w/w) under optimal conditions (0.57 M NaOH, 1:17 g/mL solid-to-liquid ratio, 60 °C, 4 h). Structural analysis revealed that PMAX was primarily composed of arabinose, xylose, glucose, galactose, and mannose (molar ratio 45.1:36.1:10.4:7.1:1.8), with a highly substituted (1 â†’ 4)-linked ß-D-xylopyranose backbone and a molecular weight of 794.88 kDa. PMAX displayed a significant reducing power of 0.617, metal chelating activity of 51.72 %, and DPPH, and ABTS radical scavenging activities (64.43 and 75.4 %, respectively at 5 mg/mL). It also demonstrated anti-glycation effects by inhibiting fructosamine (52.5 %), protein carbonyl (53.6 %), and total advanced glycation end products (77.0 %) formation, and reduced protein oxidation products such as dityrosine (84.7 %), kynurenine (80.2 %), and N'-formyl-kynurenine (50.0 %) at 5 mg/mL. PMAX induced the growth of Lactobacillus spp. in vitro and modulate gut microbiota in male Wistar rats by increasing Bacteroidetes and decreasing Firmicutes. These results provide a basis for further research on pearl millet arabinoxylan and its possible nutraceutical application.

2.
Plant Physiol Biochem ; 215: 109025, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142014

RESUMO

Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.

3.
Plant Physiol Biochem ; 215: 109052, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39163652

RESUMO

Cellulose and hemicellulose are the major structural ß-glycan polysaccharides in cell walls of land plants. They are characterized by a backbone of ß-(1,3)- and/or ß-(1,4)-linked sugars such as glucose, mannose, or xylose. The backbones of these polymers are produced by processive glycosyltransferases (GTs) called synthases having multiple transmembrane domains anchoring them to the membrane. Thus, they are among the most difficult membrane proteins to test in vitro and to purify. Recently, we developed an in vitro GT-array (i-GTray) platform and showed that non-processive type II membrane GTs could be produced via cell-free system in a soluble and active form and tested in this platform. To determine whether i-GT-ray platform is adequate for the production and testing of ß-glycan synthases, we tested five synthases involved in cellulose, xyloglucan, (gluco)mannan, and ß-(1,3)(1,4)-mixed-linkage glucan synthesis. Our results revealed unsuspected features of these enzymes. For example, all these synthases could be produced in a soluble and active form and are active in the absence of detergent or membrane lipids, and none of them required a primer for initiation of synthesis. All synthases produced ethanol-insoluble products that were susceptible to the appropriate hydrolases (i.e., cellulase, lichenase, mannanase). Using this platform, we showed that AtCslC4 and AtXXT1 interact directly to form an active xyloglucan synthase that produced xylosylated cello-oligosaccharides (up to three xylosyl residues) when supplied with UDP-Glc and UDP-Xyl. i-GTray platform represents a simple and powerful functional genomics tool for discovery of new insights of synthase activities and can be adapted to other enzymes.

4.
Int J Biol Macromol ; 277(Pt 3): 134176, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096834

RESUMO

Exploring efficient and comprehensive utilization of agricultural waste to produce high value-added products has been global research hotspot. In this study, a novel process for integrated production of xylose and docosahexaenoic acid (DHA) from hemicellulose and cellulose in corncob was developed. Corncob was treated with dilute H2SO4 at 121 °C for 1 h and xylose was readily produced with a recovery yield of 79.35 %. The corncob residue was then subject to alkali pretreatment under optimized conditions of 0.1 g NaOH/g dry solid, 60 °C for 2 h, and the contents of cellulose, hemicellulose, and lignin in the resulting residue were 87.49 %, 7.58 % and 2.31 %, respectively. The cellulose in the residue was easily hydrolyzed by cellulase, yielding 74.87 g/L glucose with hydrolysis efficiency of 77.02 %. Remarkably, the corncob residue hydrolysate supported cell growth and DHA production in Schizochytrium sp. ATCC 20888 well, and the maximum biomass of 32.71 g/L and DHA yield of 4.63 g/L were obtained, with DHA percentage in total fatty acids of 36.89 %. This study demonstrates that the corncob residue generated during xylose production, rich in cellulose, can be effectively utilized for DHA production by Schizochytrium sp., offering a cost-effective and sustainable alternative to pure glucose.


Assuntos
Celulose , Ácidos Docosa-Hexaenoicos , Polissacarídeos , Xilose , Zea mays , Xilose/química , Celulose/química , Zea mays/química , Ácidos Docosa-Hexaenoicos/química , Polissacarídeos/química , Polissacarídeos/biossíntese , Hidrólise , Biomassa , Fermentação
5.
Int J Biol Macromol ; 278(Pt 1): 134519, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111479

RESUMO

Efficiently utilization of plant resources is heavily restricted by the resistance of lignocellulose in plant cells, which is related to the interlinkages of lignocellulose components. Hemicellulose in plant cell wall is bound to cellulose by hydrogen bond and linked with lignin in lignin-carbohydrate complex (LCC). In the xylan chain of hemicellulose, glucuronic acid (GA) is a typical side-group, which provides clues for us to label and locate hemicellulose. The way to label GA on the surface of pulp fibers obtained from pulping process is benefit to explore the deconstruction of lignocellulose. Herein, a new visualization method, fluorescence modified molecularly imprinted polymers (MIP) were applied to recognize and locate GA on the pulp fiber surface. The method combining fluorescence imaging and integrated 3D fiber structure verified the feasibility of the MIP for specific GA recognition. The results showed that xylan (represented by GA) was closely attached to lignin, distributed along the inner wall of pulp fiber cells, and gradually taken off from the inside edge of fiber cells with the deconstruction of lignocellulose. This research provided a basis to develop visualization bioimaging technology to identify biomass components.

6.
Carbohydr Polym ; 343: 122415, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174111

RESUMO

The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.


Assuntos
Celulose , Plantas , Polissacarídeos , Plantas/química , Plantas/metabolismo , Celulose/química , Celulose/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Ligação de Hidrogênio , Conformação Molecular , Fenômenos Químicos
8.
Carbohydr Polym ; 343: 122461, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174134

RESUMO

This study reports a pH/magnetic dual-responsive hemicellulose-based nanocomposite hydrogel with nearly 100 % carbohydrate polymer-based and biodegradable polymer compositions for drug delivery. We synthesized pure Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) using a co-precipitation method, then engineering xylan hemicellulose (XH), acrylic acid, poly(ethylene glycol) diacrylate, and Fe3O4 to synthesize the pH/magnetic dual-responsive hydrogel (Fe3O4@XH-Gel), through graft polymerization on XH with in-situ doping Fe3O4 MNPs initiated by the ammonium persulfate/tetramethylethylenediamine redox system. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), swelling gravimetric analysis, vibrating sample magnetometer (VSM) were employed to analyze the hydrogel's chemical structures, morphologies, pH-responsive behaviors, and magnetic responsiveness characteristics, mechanical and rheological properties, as well as cytotoxicity and biodegradability. The results indicate that the Fe3O4@XH-Gel exhibited excellent dual responsiveness to pH and magnetism. Furthermore, an emphasis was placed on the in-depth analysis of the pH response mechanism. Finally, we utilized this cutting-edge hydrogel to investigate the controlled-release behavior of two model drugs, Acetylsalicylic acid and Theophylline. The hydrogel demonstrated exceptional controlled release attributes, positioning it as a potential carrier for targeted drug delivery, particularly to the gastrointestinal conditions.


Assuntos
Hidrogéis , Nanocompostos , Polissacarídeos , Xilanos , Hidrogéis/química , Hidrogéis/síntese química , Xilanos/química , Concentração de Íons de Hidrogênio , Polissacarídeos/química , Nanocompostos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Teofilina/química , Teofilina/administração & dosagem , Humanos
9.
Carbohydr Polym ; 343: 122493, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174143

RESUMO

Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.


Assuntos
Celulases , Celulose , Frutas , Celulose/metabolismo , Celulose/química , Celulases/metabolismo , Celulases/genética , Celulases/química , Frutas/enzimologia , Filogenia , Polimerização , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Temperatura
10.
BMC Plant Biol ; 24(1): 717, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069632

RESUMO

BACKGROUND: Sclerotinia spp. are generalist fungal pathogens, infecting over 700 plant hosts worldwide, including major crops. While host resistance is the most sustainable and cost-effective method for disease management, complete resistance to Sclerotinia diseases is rare. We recently identified soft basal stem as a potential susceptibility factor to Sclerotinia minor infection in lettuce (Lactuca sativa) under greenhouse conditions. RESULTS: Analysis of stem and root cell wall composition in five L. sativa and one L. serriola accessions with varying growth habits and S. minor resistance levels revealed strong association between hemicellulose constituents, lignin polymers, disease phenotypes, and basal stem mechanical strength. Accessions resistant to basal stem degradation consistently exhibited higher levels of syringyl, guaiacyl, and xylose, but lower levels of fucose in stems. These findings suggest that stem cell wall polymers recalcitrant to breakdown by lignocellulolytic enzymes may contribute to stem strength-mediated resistance against S. minor. CONCLUSIONS: The lignin content, particularly guaiacyl and syringyl, along with xylose could potentially serve as biomarkers for identifying more resistant lettuce accessions and breeding lines. Basal stem degradation by S. minor was influenced by localized microenvironment conditions around the stem base of the plants.


Assuntos
Ascomicetos , Parede Celular , Resistência à Doença , Lactuca , Lignina , Doenças das Plantas , Caules de Planta , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Parede Celular/metabolismo , Lactuca/microbiologia , Lactuca/metabolismo , Ascomicetos/fisiologia , Lignina/metabolismo , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo , Microambiente Celular , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
11.
Bioresour Technol ; 408: 131109, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009045

RESUMO

Volatile-char interaction is an important phenomenon in biomass thermal conversion process, which significantly contributes to the decomposition, deoxygenation and upgrading of biomass. However, the deep insight into volatile-char interaction mechanisms between hemicellulose, cellulose and lignin is currently unclear. In this work, above mechanism was studied through systematic single-/bi-component torrefactions and the follow-up char analysis. Results demonstrate that only hemicellulose volatile and cellulose char interaction exists during torrefaction at 250 °C, causing over 19.9 wt% of mass loss and 27.3 wt% of O removal for cellulose. This volatile-char interaction causes significant depolymerization and amorphization of cellulose by hydrolysis, acid hydrolysis and esterification reactions. The depolymerized and amorphous cellulose partly thermally decomposes to dehydrated sugars and aromatic compounds through dehydroxylation and aromatization reactions. A volatile-char interaction mechanism model is thus developed. This work provides theoretical insight into biomass thermal conversion and provides basis for the development of new thermochemical method.


Assuntos
Biomassa , Celulose , Celulose/química , Celulose/metabolismo , Hidrólise , Carvão Vegetal/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Lignina/química , Lignina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Volatilização
12.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031878

RESUMO

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Assuntos
Parede Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Madeira , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Parede Celular/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/genética , Madeira/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Xilema/metabolismo , Xilema/genética , Lignina/biossíntese , Lignina/metabolismo , Plantas Geneticamente Modificadas , Genes de Plantas , Celulose/biossíntese , Celulose/metabolismo
13.
Int J Biol Macromol ; 277(Pt 1): 133986, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033896

RESUMO

Galactoglucomannan (GGM) is the predominant hemicellulose in coniferous trees, such as Norway spruce, and has been used as a multipurpose emulsifier in the food industry. In vitro digestion with a cellular antioxidant activity assay was performed to determine the bioaccessibility and antioxidant activity of phenolic compounds, and the behaviour of GGM on in vivo experimental assay against induced colon cancer. The results showed that digestion decreased the bioaccessibility and antioxidant capacity of phenolic compounds. Cellular analysis did not support these findings once an antioxidant effect was observed in human cell lines. GGM attenuated the initiation and progression of colon cancer, by reducing the foci of aberrant crypts in rats, and modified the intestinal bacterial microbiota (disrupting the balance between Firmicutes and Bacteroidetes phyla). Thus, GGM provided chemopreventive protection against the development of colon cancer and acted as an intracellular antioxidant agent.


Assuntos
Antioxidantes , Neoplasias do Colo , Microbioma Gastrointestinal , Mananas , Estresse Oxidativo , Humanos , Animais , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Antioxidantes/farmacologia , Mananas/farmacologia , Mananas/química , Masculino , Linhagem Celular Tumoral
14.
Plants (Basel) ; 13(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999566

RESUMO

As one of the most important food crops in the world, rice yield is directly related to national food security. Lodging is one of the most important factors restricting rice production, and the cultivation of rice varieties with lodging resistance is of great significance in rice breeding. The lodging resistance of rice is directly related to the mechanical strength of the stalks. In this paper, we reviewed the cell wall structure, its components, and its genetic regulatory mechanism, which improved the regulatory network of rice stalk mechanical strength. Meanwhile, we analyzed the new progress in genetic breeding and put forward some scientific problems that need to be solved in this field in order to provide theoretical support for the improvement and application of rice breeding.

15.
J Exp Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980746

RESUMO

Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together the current knowledge about the organisation and metabolism of the rice cell wall, and addresses gaps and missing information connected to the cell wall of rice and the enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans and glucuronoarabinoxylans, are well-understood in rice and other grasses/grains. Conversely, there are still open questions and missing links when it comes down to xyloglucans, glucomannans, pectin, lignin and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterise their activity and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. With this review, we demonstrate the current state and demarcate the research areas with potential for further investigations.

16.
Dev Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971156

RESUMO

Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.

17.
Int J Biol Macromol ; 275(Pt 2): 133787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992535

RESUMO

Bougainvillea glabra fibers (BGFs) present a promising avenue for sustainable material development owing to their abundance and favorable properties. This study entails a thorough investigation into the composition, physical characteristics, mechanical behavior, structural properties, thermal stability, and hydrothermal absorption behavior of BGFs. Chemical analysis reveals the predominant presence of cellulose (68.92 %), accompanied by notable proportions of hemicellulose (12.64 %), lignin (9.56 %), wax (3.72 %), moisture (11.78 %), and ash (1.75 %). Physical measurements ascertain a mean fiber diameter of approximately 232.63 ± 8.59 µm, while tensile testing demonstrates exceptional strength, with stress values ranging from 120 ± 18.26 MPa to a maximum of 770 ± 23.19 MPa at varying strains. X-ray diffraction (XRD) elucidates a crystalline index (CI) of 68.17 % and a crystallite size (CS) of 9.42 nm, indicative of a well-defined crystalline structure within the fibers. Fourier-transform infrared spectroscopy (FTIR) confirms the presence of characteristic functional groups associated with cellulose, hemicellulose, wax, and water content. Thermogravimetric analysis (TGA) delineates distinct thermal degradation stages, with onset temperatures ranging from 102.76 °C for water loss to 567.55 °C for ash formation. Furthermore, hydrothermal absorption behavior exhibits temperature and time-dependent trends, with absorption percentages ranging from 15.26 % to 32.19 % at temperatures between 30 °C and 108 °C and varying exposure durations. These comprehensive findings provide essential insights into the properties and potential applications of BGFs in diverse fields such as bio-composites, textiles, and environmentally friendly packaging solutions.


Assuntos
Nyctaginaceae , Nyctaginaceae/química , Celulose/química , Resistência à Tração , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Mecânicos , Difração de Raios X , Temperatura , Lignina/química , Termogravimetria
18.
ChemSusChem ; : e202400962, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959341

RESUMO

Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).

19.
Int J Biol Macromol ; 274(Pt 2): 133325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908627

RESUMO

Hemicellulose plays a key role in both the production of cellulose nanofibrils (CNF) and their properties as suspensions and films. While the use of enzymatic and chemical pre-treatments for tailoring hemicellulose levels is well-established, post-treatment methods using enzymes remain relatively underexplored and hold significant promise for modifying CNF film properties. This study aimed to investigate the effects of enzymatic xylan removal on the properties of CNF film for packaging applications. The enzymatic post-treatment was carried out using an enzymatic cocktail enriched with endoxylanase (EX). The EX post-treated-CNFs were characterized by LALLS, XRD, and FEG-SEM, while their films were characterized in terms of physical, morphological, optical, thermal, mechanical, and barrier properties. Employing varying levels of EX facilitated the hydrolysis of 8 to 35 % of xylan, yielding CNFs with different xylan contents. Xylan was found to be vital for the stability of CNF suspensions, as its removal led to the agglomeration of nanofibrils. Nanostructures with preserved crystalline structures and different morphologies, including nanofibers, nanorods, and their hybrids were observed. The EX post-treatment contributed to a smoother film surface, improved thermostability, and better moisture barrier properties. However, as the xylan content decreased, the films became lighter (lower grammage), less strong, and more brittle. Thus, the enzymatic removal of xylan enabled the customization of CNF films' performance without affecting the inherent crystalline structure, resulting in materials with diverse functionalities that could be explored for use in packaging films.


Assuntos
Celulose , Nanofibras , Xilanos , Xilanos/química , Nanofibras/química , Celulose/química , Hidrólise , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo
20.
Int J Biol Macromol ; 274(Pt 2): 133508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944067

RESUMO

Agave species are typical crassulacean acid metabolism (CAM) plants commonly cultivated to produce beverages, fibers, and medicines. To date, few studies have examined hemicellulose biosynthesis in Agave H11648, which is the primary cultivar used for fiber production. We conducted PacBio sequencing to obtain full-length transcriptome of five agave tissues: leaves, shoots, roots, flowers, and fruits. A total of 41,807 genes were generated, with a mean length of 2394 bp and an annotation rate of 97.12 % using public databases. We identified 42 glycosyltransferase genes related to hemicellulose biosynthesis, including mixed-linkage glucan (1), glucomannan (5), xyloglucan (16), and xylan (20). Their expression patterns were examined during leaf development and fungal infection, together with hemicellulose content. The results revealed four candidate glycosyltransferase genes involved in xyloglucan and xylan biosynthesis, including glucan synthase (CSLC), xylosyl transferase (XXT), xylan glucuronyltransferase (GUX), and xylan α-1,3-arabinosyltransferase (XAT). These genes can be potential targets for manipulating xyloglucan and xylan traits in agaves, and can also be used as candidate enzymatic tools for enzyme engineering. We have provided the first full-length transcriptome of agave, which will be a useful resource for gene identification and characterization in agave species. We also elucidated the hemicellulose biosynthesis machinery, which will benefit future studies on hemicellulose traits in agave.


Assuntos
Agave , Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Polissacarídeos , Transcriptoma , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Agave/genética , Polissacarídeos/biossíntese , Xilanos/metabolismo , Xilanos/biossíntese , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...