Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Microb Pathog ; : 106928, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270754

RESUMO

In recent years, the red swamp crayfish (Procambarus clarkii, P. clarkii) farming industry has suffered huge economic losses due to the pathogenic bacterium Spiroplasma eriocheiris (S. eriocheiris). To elucidate the immune response mechanism and identify hub immune genes as well as their associated microRNAs that regulate the host response of P. clarkii against S. eriocheiris infection, we conducted a comprehensive analysis on P. clarkii hemocyte mRNA and microRNA (miRNA) transcriptomes at different infection stages using third- and second-generation sequencing technologies. In full-length transcriptome functional annotation, 8,155 unigenes were annotated, and 1,168 potential new transcripts were predicted. In the mRNA transcriptome, a total of 3,168 differentially expressed genes were identified at different infection stages, including 1,492 upregulated and 1,676 downregulated genes (duplicate genes excluded). Transcriptome analysis revealed 880 differentially expressed genes involved in multiple pathways and processes such as endocytosis, autophagy, lysosome, mTOR signaling, phagosome, and the Fanconi anemia pathway. Mfuzz analysis was employed to integrate and cluster the differential expression trends of genes across the three infection stages. In the miRNA transcriptome, 234 miRNAs and 966 predicted target genes were identified, with 86 differentially expressed miRNAs identified across the three time periods. A significant difference (P <0.05) was observed for miRNAs including pcl-miR-146-3p, pcl-miR-74-3p, pcl-miR-225-5p, and pcl-miR-68-5p. These miRNAs are involved in multiple immune and autophagy-related pathways and have regulatory effects on immune genes including Vps26, lqf, and ERK-A. Based on the differentially expressed immune-related genes, we constructed a protein-protein interaction (PPI) network, which revealed the interactions among hub genes including Rac1, Akt1, Rho1, and Egfr. We also constructed a miRNA-gene interaction network in immune and autophagy-related processes, highlighting the potential regulatory effects of miRNAs including pcl-miR-183-5p, pcl-miR-146-3p, pcl-miR-176-5p, and pcl-miR-225-5p on proteins including LST8, SNAP29, Rab-7A, and ERK-A. To conclude, this study has identified hub immune genes and corresponding regulatory miRNAs in P. clarkii hemocytes in response to S. eriocheiris infection and explored the roles of these genes in selected pathways and processes. These findings are expected to provide further insights into the molecular mechanisms that confer resistance to S. eriocheiris infection in P. clarkii.

2.
Insects ; 15(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194791

RESUMO

The innate immunity of insects encompasses cellular and humoral defense mechanisms and constitutes the primary defense against invading microbial pathogens. Cellular immunity (phagocytosis, nodulation, and encapsulation) is primarily mediated by hemocytes. Plasmatocytes and granulocytes play an important role and require changes in the cytoskeletons of hemocytes. However, research investigating the immunological impacts of insecticides on the fall armyworm (FAW), Spodoptera frugiperda, remains scarce. Therefore, we conducted a study to investigate the effects of chlorantraniliprole exposure on cellular immunity in FAW larvae. Our findings revealed the presence of five types of hemocytes in the larvae: prohemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. The LD10, LD20, and LD30 of chlorantraniliprole affected both the morphology and total count of some hemocytes in the larvae. Moreover, larvae exposed to chlorantraniliprole showed increased phagocytosis, nodulation, and encapsulation. To determine the mechanism of the enhanced cellular immunity, we studied plasmatocytes in the spread state and the cytoskeleton in hemocytes. It was found that the spreading ratio of plasmatocytes and the areas of the cytoskeletons in hemocytes were increased after chlorantraniliprole treatment. These results suggest that exposure to chlorantraniliprole results in an enhanced immune response function in FAW larvae, which may be mediated by cytoskeletal changes and plasmatocyte spreading. Consequently, this study provides valuable insights into the cellular immune response of FAW larvae to insecticide exposure.

3.
Acta Naturae ; 16(2): 4-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188265

RESUMO

As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.

4.
Arch Insect Biochem Physiol ; 116(4): e22146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190478

RESUMO

T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds.


Assuntos
Dípteros , Larva , Animais , Larva/imunologia , Dípteros/imunologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Simuliidae/imunologia , Ribonucleases/metabolismo , Ribonucleases/genética , Corpo Adiposo/metabolismo , Corpo Adiposo/imunologia , Imunidade Inata
5.
Fish Shellfish Immunol ; 153: 109831, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142372

RESUMO

Aquaculture industry suffers significant limitations such as low resistance to diseases and expensive feed. This study investigated the antibacterial and immunostimulatory activities of ZnO-Ulva lactuca nanocomposite (ZnO-Ul NC) in the Procambarus clarkii. Zinc oxide nanoparticles (ZnO NPs) and ZnO-Ul NC were synthetized and characterized by electron microscopies as well as Fourier transform infrared spectroscopy. ZnO NPs and ZnO-Ul NC inhibited the growth of the isolated species Citrobacter freundii and Enterobacter hormaechei. For immunostimulatory evaluation, six crayfish groups (control, U. lactuca, ZnO L, ZnO H, ZnO-Ul L, and ZnO-Ul H) were fed on commercial diet, Ulva lactuca powder, and low or high dose of ZnO NPs or ZnO-Ul NCs, respectively for 90 days. The highest levels of total hemocyte count, granular cells%, phenoloxidase (PO) activity in hemolymph, and NO, superoxide dismutase (SOD), and GSH in hepatopancreas were all reported in the ZnO-Ul groups. The expression of proPO, SOD, and lysozyme exhibited the highest upregulation in the ZnO-Ul H group. Taken together, dietary ZnO-Ul NC significantly improved the non-specific immunity and antioxidant milieu of the crayfish at the genomic and proteomic levels. ZnO-Ul NC is cost effective, easily synthesized, and a promising immunostimulant for Procambarus clarkii that could be used in the aquaculture.


Assuntos
Adjuvantes Imunológicos , Ração Animal , Astacoidea , Dieta , Suplementos Nutricionais , Nanocompostos , Ulva , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/administração & dosagem , Astacoidea/imunologia , Astacoidea/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Nanocompostos/química , Ulva/química , Imunidade Inata/efeitos dos fármacos , Antibacterianos/farmacologia , Algas Comestíveis
6.
Chemosphere ; 363: 142884, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019185

RESUMO

Nanoparticles (NPs) are widely used in various fields, including antifouling paints for ships and industrial structures submerged in water. The potential impact of NPs on aquatic organisms, particularly their potential toxicity, is a significant concern, as their negative impact has been relatively poorly studied. In this study, we evaluated the effect of different concentrations of bimetallic Ag-TiO2 and ZnTi2O4-TiO2 NPs, which could potentially be used in antifouling coatings, on the hemocytes of the Mediterranean mussel Mytilus galloprovincialis. Hemocytes were exposed to NPs at concentrations of 0.1-1 mg/L for 1 and 2 h, and the production of reactive oxygen species (ROS), levels of DNA damage, and number of dead cells were measured. Exposure to Ag-TiO2 NPs at 1 mg/L concentration for 1 h suppressed ROS production in hemocytes and reduced the relative number of agranulocytes in cell suspensions, without inducing DNA damage or cell death. Exposure to ZnTi2O4-TiO2 NPs did not cause changes in the ratio of granulocytes to agranulocytes in suspensions, nor did it affect other functional parameters of hemocytes. However, after a 2 h exposure period, ZnTi2O4-TiO2 NPs (1 mg/L) significantly reduced the production of ROS by hemocytes. These findings suggest that Ag-TiO2 and ZnTi2O4-TiO2 NPs have low acute toxicity for marine bivalves.


Assuntos
Dano ao DNA , Hemócitos , Nanopartículas Metálicas , Mytilus , Espécies Reativas de Oxigênio , Prata , Titânio , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Titânio/toxicidade , Hemócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
7.
Pestic Biochem Physiol ; 203: 105965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084763

RESUMO

Herein, we focused on the larvicidal effects and potential mechanisms of 5-ethenyl-2,2'-bithiophene (5 EB), a compound isolated from Echinops ritro L. on Aedes aegypti larvae. Our results show that 5 EB exhibits pronounced larvicidal activity against A. aegypti larvae, with an LC50 = 0.24 mg/L, considerably lesser than that of the traditional insecticide, rotenone. Observations using fluorescence microscopy, electron microscopy, and imaging flow cytometry demonstrated that 5 EB targets the hemocytes of larvae, leading to the disruption of their intracellular membrane systems. This disruption leads to considerable damage to the cellular structure and function, leading to the death of test subjects. Note that additional investigation into the molecular mechanism of 5 EB's action was conducted using transcriptomic analysis. Both GO and KEGG enrichment analyses reported that the differentially expressed genes were predominantly associated with membranes, lysosomes, and catalytic activities. To summarize, this study provides new options for developing new, environmentally friendly, plant-based larvicides for mosquito control.


Assuntos
Aedes , Inseticidas , Larva , Animais , Aedes/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Echinops (Planta)/química , Tiofenos/farmacologia , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
J Invertebr Pathol ; 206: 108165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986766

RESUMO

This work examines the insecticidal activity of octanoic acid (C8:0), a short-chain fatty acid detected in entomopathogenic fungus - Conidiobolus coronatus medium, against Lucilia sericata larvae and adults. The LD50 value was calculated as 3.04±0.26 µg/mg (3040 mg/kg) of insect body mass, which places the compound in category 5 of acute toxicity (slightly hazardous). The presented research also describes its probable mechanism, with a particular focus on changes in two main insect defense mechanisms: (1) the composition of the cuticle (GC-MS analysis) and (2) immunocompetent cells (microscopic analysis of cultured hemocytes). More precisely, octanoic acid application resulted in changes in cuticular free fatty acid (FFA) profiles in both adults and larvae; generally, treatment increased short-chain FFAs, and a decrease of middle- and long-chain FFAs. Both in vivo and in vitro applications of octanoic acid resulted in vacuolisation, disintegration, and destruction of nets formed by plasmatocytes. As the compound has also previously been found to be toxic against Galleria mellonella, it appears to have lethal potential against insects in both the Orders Diptera and Lepidoptera, indicating it may have strong entomopathogenic potential. It is worth noting that octanoic acid is approved as a food additive with well-documented insecticidal activity, and hence may be a valuable component in the design of new insecticides that are safe for both humans and the environment.


Assuntos
Calliphoridae , Caprilatos , Inseticidas , Larva , Animais , Caprilatos/farmacologia , Caprilatos/química , Inseticidas/farmacologia , Calliphoridae/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Ácidos Graxos não Esterificados/metabolismo , Hemócitos/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38908680

RESUMO

The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels.


Assuntos
Antioxidantes , Catalase , Dano ao DNA , Brânquias , Mytilus , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Animais , Brânquias/metabolismo , Brânquias/patologia , Antioxidantes/metabolismo , Mytilus/metabolismo , Concentração de Íons de Hidrogênio , Catalase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Hemócitos/metabolismo , Água/metabolismo , Hipóxia/metabolismo
10.
Mar Pollut Bull ; 205: 116648, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917499

RESUMO

Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.


Assuntos
Bivalves , Reprodução , Testículo , Poluentes Químicos da Água , Animais , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Bivalves/efeitos dos fármacos , México , Monitoramento Ambiental , Metais/toxicidade
11.
Fish Shellfish Immunol ; 151: 109664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844186

RESUMO

Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.


Assuntos
Hemócitos , Picornaviridae , Animais , Picornaviridae/imunologia , Hemócitos/imunologia , Hemócitos/ultraestrutura , Imunocompetência , Bivalves/imunologia , Bivalves/virologia , Fagocitose , Espanha , Citometria de Fluxo/veterinária , Microscopia Eletrônica de Transmissão/veterinária , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia
12.
Chemosphere ; 362: 142595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866330

RESUMO

Hemocytes of freshwater bivalves are an important target model for evaluating copper (Cu) toxicity in vitro, with excess Cu causing adverse responses in these organisms. Despite this, the mechanisms underlying cytotoxicity remain poorly understood. The freshwater bivalve Anodonta woodiana, employed as a model organism in freshwater environments, was utilized in this study. Hemocytes of A. woodiana were exposed to various aqueous Cu treatments (0.001, 0.01, 0.1, 1, and 10 mg/L), and a control group (no Cu added) for 3 h to investigate the cytotoxic mechanisms of Cu. The results showed a significant increase in the production of reactive oxygen species in hemocytes of all Cu exposed groups compared to the control (p < 0.05). Remarkably, Cu treatments disrupted the cellular membrane (p < 0.05) but did not induce significant changes in the stability of the lysosomal membrane. Cu targeted the mitochondria, leading to a reduction in mitochondrial membrane potential. Additionally, all Cu treatments significantly increased the degree of DNA damage (p < 0.05). Cellular damage and a significant decline in cell viability were observed when the Cu exposure concentration reached 0.1, 1, and 10 mg/L (p < 0.05). Our study provides new insights into the cytotoxicity mechanisms triggered by Cu in hemocytes of the freshwater bivalve A. woodiana, even under environmentally relevant conditions of 0.01 mg/L exposure.


Assuntos
Anodonta , Sobrevivência Celular , Cobre , Água Doce , Hemócitos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Animais , Hemócitos/efeitos dos fármacos , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Anodonta/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Bivalves/efeitos dos fármacos
13.
Biology (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785782

RESUMO

Vibrio parahaemolyticus is one of the main causative agents leading to acute hepatopancreatic necrosis disease, the severe bacterial disease that occurs during shrimp aquaculture. Hemocytes play important roles during Vibrio infection. Previously, we found that there were few differentially expressed genes (DEGs) between hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before infection. We considered that there should be different immune responses between them after a pathogen infection. Here, the transcriptome data of hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before and after a pathogen infection were compared. The results showed that there were 157 DEGs responsive to infection in V. parahaemolyticus-resistant shrimp, while 33 DEGs in V. parahaemolyticus-susceptible shrimp. DEGs in V. parahaemolyticus-resistant shrimp were mainly related to immune and glycolytic processes, while those in V. parahaemolyticus-susceptible shrimp were mainly related to metabolism, with only two DEGs in common. A further analysis of genes involved in glucose metabolism revealed that GLUT2, HK, FBP, and PCK1 were lowly expressed while PC were highly expressed in hemocytes of the V. parahaemolyticus-resistant shrimp, indicating that glucose metabolism in shrimp hemocytes was related to a V. parahaemolyticus infection. After the knockdown of PC, the expression of genes in Toll and IMD signaling pathways were down-regulated, indicating that glucose metabolism might function through regulating host immunity during V. parahaemolyticus infection. The results suggest that the immune responses between V. parahaemolyticus-resistant and -susceptible shrimp were apparently different, which probably contribute to their different V. parahaemolyticus resistance abilities.

14.
Front Immunol ; 15: 1385863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774871

RESUMO

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Assuntos
Conidiobolus , Citocinas , Larva , Mariposas , Animais , Conidiobolus/imunologia , Larva/imunologia , Larva/microbiologia , Citocinas/metabolismo , Citocinas/imunologia , Mariposas/imunologia , Mariposas/microbiologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/microbiologia , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Zigomicose/imunologia , Zigomicose/metabolismo
15.
PeerJ ; 12: e17348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770098

RESUMO

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Assuntos
Anfípodes , Hemócitos , Hemolinfa , Lagos , Sanguessugas , Animais , Anfípodes/imunologia , Anfípodes/parasitologia , Hemolinfa/imunologia , Hemolinfa/parasitologia , Sanguessugas/imunologia , Lagos/parasitologia , Hemócitos/imunologia , Imunidade Celular , Sibéria , Interações Hospedeiro-Parasita/imunologia
16.
Aquat Toxicol ; 272: 106958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776609

RESUMO

Ammonia-N poses a significant threat to aquatic animals. However, the mechanism of ROS production leading to DNA damage in hemocytes of crustaceans is still unclear. Additionally, the mechanism that cells respond to DNA damage by activating complex signaling networks has not been well studied. Therefore, we exposed shrimp to 0, 2, 10, and 20 mg/L NH4Cl for 0, 3, 6, 12, 24, 48, and 72 h, and explored the alterations in endoplasmic reticulum stress and mitochondrial fission, DNA damage, repair, autophagy and apoptosis. The findings revealed that ammonia exposure led to an increase in plasma ammonia content and neurotransmitter content (DA, 5-HT, ACh), and significant changes in gene expression of PLC and Ca2+ levels. The expression of disulfide bond formation-related genes (PDI, ERO1) and mitochondrial fission-related genes (Drp1, FIS1) were significantly increased, and the unfolded protein response was initiated. Simultaneously, ammonia-N exposure leads to an increase in ROS levels in hemocytes, resulting in DNA damage. DNA repair and autophagy were considerably influenced by ammonia-N exposure, as evidenced by changes in DNA repair and autophagy-related genes in hemocytes. Subsequently, apoptosis was induced by ammonia-N exposure, and this activation was associated with a caspase-dependent pathway and caspase-independent pathway, ultimately leading to a decrease in total hemocytes count. Overall, we hypothesized that neurotransmitters in the plasma of shrimp after ammonia-N exposure bind to receptors on hemocytes membrane, causing endoplasmic reticulum stress through the PLC-IP3R-Ca2+ signaling pathway and leading to mitochondrial fission. Consequently, this process resulted in increased ROS levels, hindered DNA repair, suppressed autophagy, and activated apoptosis. These cascading effects ultimately led to a reduction in total hemocytes count. The present study provides a molecular support for the understanding of the detrimental toxicity of ammonia-N exposure to crustaceans.


Assuntos
Amônia , Apoptose , Dano ao DNA , Hemócitos , Penaeidae , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Animais , Hemócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Penaeidae/efeitos dos fármacos , Penaeidae/genética , Dano ao DNA/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amônia/toxicidade , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
17.
Environ Pollut ; 351: 124112, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705446

RESUMO

Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.


Assuntos
Hemócitos , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Hemócitos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/imunologia , Sistema Imunitário/efeitos dos fármacos , Nanopartículas/toxicidade , Fagocitose/efeitos dos fármacos
18.
J Leukoc Biol ; 116(2): 247-259, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38736141

RESUMO

The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.


Assuntos
Evolução Biológica , Eosinófilos , Eosinófilos/imunologia , Animais , Humanos , Imunidade Inata , Peroxidase de Eosinófilo/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38615808

RESUMO

Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 µg L-1 were chosen for acute exposures and 0.1 and 1 µg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.


Assuntos
Biomarcadores , Biomphalaria , Clorpirifos , Embrião não Mamífero , Inseticidas , Poluentes Químicos da Água , Clorpirifos/toxicidade , Animais , Biomphalaria/efeitos dos fármacos , Inseticidas/toxicidade , Biomarcadores/metabolismo , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Dose Letal Mediana , Reprodução/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo
20.
Mar Environ Res ; 198: 106503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640692

RESUMO

Oyster culture is a sustainable solution to food production. However, this activity can be severely impacted by the presence and proliferation of harmful microalgae such as the benthic dinoflagellates Prorocentrum hoffmannianum and Ostreopsis cf. ovata. This study aimed to evaluate the in vitro effects of P. hoffmannianum and O. cf. ovata on immune system cells (hemocytes) of the native cultured oyster Crassostrea gasar. The direct toxicity of both dinoflagellates was first evaluated assessing hemocyte viability exposed to eight concentrations of each HAB species. No reduction in hemocyte viability was found with the exposure to cell culture or the crude extract of P. hoffmannianum, but O. cf. ovata culture induced hemocyte death in a concentration-dependent manner. Ostreopsis cf. ovata concentration that promoted half of maximal reduction in hemocyte viability (EC50) was 779 cells mL-1. Posteriorly, hemocytes were exposed to both dinoflagellate cells and crude extracts to investigate their effects on hemocyte functional parameters. Despite no direct toxicity of the dinoflagellate cells, P. hoffmannianum extract caused a threefold increase in ROS production and decreased the phagocytosis rate by less than half. Ostreopsis cf. ovata cells and crude extracts also triggered an increase in ROS production (two-fold), but the phagocytosis rate was reduced (by half) only in response to the two lower cell concentrations. These results indicate a harmful potential of both dinoflagellates through a direct toxicity (only for O. cf. ovata) and functional impairment of hemocytes (both species) which could expose C. gasar oyster to opportunistic infections.


Assuntos
Crassostrea , Dinoflagellida , Hemócitos , Animais , Dinoflagellida/fisiologia , Crassostrea/imunologia , Crassostrea/efeitos dos fármacos , Crassostrea/fisiologia , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Aquicultura , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...