Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.316
Filtrar
1.
J Biol Chem ; : 107848, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357831

RESUMO

Development of chronic neuropathic pain involves complex synaptic and epigenetic mechanisms. Nerve injury causes sustained upregulation of α2δ-1 (encoded by the Cacna2d1 gene) in the dorsal root ganglion (DRG), contributing to pain hypersensitivity by directly interacting with and augmenting presynaptic NMDA receptor activity in the spinal dorsal horn. Under normal conditions, histone deacetylase 2 (HDAC2) is highly enriched at the Cacna2d1 gene promoter in the DRG, which constitutively suppresses Cacna2d1 transcription. However, nerve injury leads to HDAC2 dissociation from the Cacna2d1 promoter, promoting the enrichment of active histone marks and Cacna2d1 transcription in primary sensory neurons. In this study, we determined the mechanism by which nerve injury diminishes HDAC2 occupancy at the Cacna2d1 promoter in the DRG. Spinal nerve injury in rats increased serine-394 phosphorylation of HDAC2 in the DRG. Coimmunoprecipitation showed that nerve injury enhanced the physical interaction between HDAC2 and casein kinase II (CK2) in the DRG. Furthermore, repeated intrathecal treatment with CX-4945, a potent and specific CK2 inhibitor, markedly reversed nerve injury-induced pain hypersensitivity, HDAC2 phosphorylation, and α2δ-1 expression levels in the DRG. In addition, treatment with CX-4945 largely restored HDAC2 enrichment at the Cacna2d1 promoter and reduced the elevated levels of acetylated H3 and H4 histones, particularly H3K9ac and H4K5ac, at the Cacna2d1 promoter in the injured DRG. These findings suggest that nerve injury increases CK2 activity and CK2-HDAC2 interactions, which enhance HDAC2 phosphorylation in the DRG. This, in turn, diminishes HDAC2 enrichment at the Cacna2d1 promoter, thereby promoting Cacna2d1 transcription.

2.
J Breast Cancer Res ; 4(1): 5-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39363892

RESUMO

"What are the mechanisms driving tumor evolution under the selective pressure of chemotherapeutics?" The emerging importance of epigenetic gene regulation in cancer progression necessitates not only our understanding of which genes are potential targets but also what mechanisms are employed in targeting those genes. Understanding the mechanisms that promote the evolution of the normal genome and epigenome is central to understanding how cancer cells adapt to chemotherapy. Our previous investigations have shown that heat shock protein 90 (HSP90) has a critical role in epigenetic gene regulation through histone acetylation and phenotypic plasticity. We recently extended these results in an A549 lung cancer model to test the role of HSP90 in the plasticity of cells regarding multi-drug resistance and epithelial-to-mesenchymal transition phenotypes. HSP90 is over-expressed in multiple cancers with poor prognosis. We propose that inhibition of HSP90 results in lower phenotypic plasticity of cancer cells making them more susceptible to chemotherapeutic intervention. Here we review the context of our results in the broader field of evolution of these phenotypes.

3.
Cell ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357520

RESUMO

The SWR1 chromatin remodeling complex is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here, we use cryoelectron microscopy (cryo-EM) to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1-promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure, enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 toward the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.

4.
Int J Biol Macromol ; : 135871, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357718

RESUMO

Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.

5.
J Cell Biochem ; : e30643, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358852

RESUMO

Despite significant advances in the treatment of cutaneous melanoma (hereafter melanoma), the prognosis remains less favorable due to therapeutic resistance, which is presumably linked to epigenetic dysregulation. We hypothesized that the histone lysine demethylase KDM4B could play a pivotal role in controlling therapy-resistant melanoma. To validate our hypothesis, we retrieved RNA sequencing data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) program and observed upregulation of KDM4B in both primary and metastatic melanoma, which was associated with poor survival. To explore its role, we used murine B16, human SK-MEL-5, and G-361 melanoma cells as in vitro models of melanoma. We found that KDM4B inhibition using NCGC00244536 increased global levels of H3K9me3 and downregulated the expressions of cell cycle progression-related genes Cdk1, Cdk4, Ccnb1, and Ccnd1. Moreover, genetic ablation of KDM4B or its chemical inhibition using NCGC00244536 reduced p53 production by upregulating MDM2, which enhances the proteolytic degradation of p53. Interestingly, despite the reduction of p53, these interventions augmented apoptosis and senescence-induced cell death by activating pathways downstream of p53, as evidenced by reduced levels of pro-survival Bcl-2 and Bcl-xL proteins and increased production of pro-apoptotic cleaved caspase-3, caspase-7, Bax, and the senescence inducer Cdkn1a. Compared to the FDA-approved anti-melanoma agent dacarbazine, NCGC00244536 exhibited more pronounced cytotoxic and antiproliferative effects in melanoma cells. Importantly, NCGC00244536 demonstrated minimal cytotoxicity to low Kdm4b-expressing mouse embryonic fibroblasts. In conclusion, our findings suggest that KDM4B inhibition can override the antitumor effect of p53, and potentially serve as a therapeutic strategy for melanoma.

6.
Mol Ther Oncol ; 32(4): 200871, 2024 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-39351073

RESUMO

Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.

7.
Front Pharmacol ; 15: 1454523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351092

RESUMO

Background: Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods: A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results: Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion: The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.

8.
Front Immunol ; 15: 1430187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351229

RESUMO

Increased MMP-9 expression in the tumor microenvironment (TME) plays a crucial role in the extracellular matrix remodeling to facilitate cancer invasion and metastasis. However, the mechanism of MMP-9 upregulation in TME remains elusive. Since TGF-ß and TNF-α levels are elevated in TME, we asked whether these two agents interacted to induce/augment MMP-9 expression. Using a well-established MDA-MB-231 breast cancer model, we found that the synergy between TGF-ß and TNF-α led to MMP-9 upregulation at the transcriptional and translational levels, compared to treatments with each agent alone. Our in vitro findings are corroborated by co-expression of elevated MMP-9 with TGF-ß and TNF-α in human breast cancer tissues. Mechanistically, we found that the MMP-9 upregulation driven by TGF-ß/TNF-α cooperativity was attenuated by selective inhibition of the TGF-ßRI/Smad3 pathway. Comparable outcomes were observed upon inhibition of TGF-ß-induced phosphorylation of Smad2/3 and p38. As expected, the cells defective in Smad2/3 or p38-mediated signaling did not exhibit this synergistic induction of MMP-9. Importantly, the inhibition of histone methylation but not acetylation dampened the synergistic MMP-9 expression. Histone modification profiling further identified the H3K36me2 as an epigenetic regulatory mark of this synergy. Moreover, TGF-ß/TNF-α co-stimulation led to increased levels of the transcriptionally permissive dimethylation mark at H3K36 in the MMP-9 promoter. Comparable outcomes were noted in cells deficient in NSD2 histone methyltransferase. In conclusion, our findings support a cooperativity model in which TGF-ß could amplify the TNF-α-mediated MMP-9 production via chromatin remodeling and facilitate breast cancer invasion and metastasis.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz , Metástase Neoplásica , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Fator de Necrose Tumoral alfa/metabolismo , Feminino , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Metilação , Transdução de Sinais , Microambiente Tumoral
9.
Theriogenology ; 230: 299-304, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39366208

RESUMO

During spermatogenesis, a substantial proportion of histones are substituted by protamine to condense the genome within the sperm head. Studies indicate that a minority of histones, typically ranging from 1 to 15 %, persist in mammalian sperm post-substitution. The persistence of histones in the zygote facilitates chromatin accessibility to transcription factors in regions crucial for early embryonic development. Nevertheless, the potential causal relationship between retained histones and fertility phenotypes remains uncertain. This study seeks to investigate this relationship. The results indicate that in mature bovine sperm, regions of DNA associated with fertility that bind to histones are primarily concentrated in promoters and transcription start sites, potentially impacting bull fertility and offspring fertility through the regulation of relevant genes. Furthermore, microRNAs and estradiol/ESR are suggested to be the main regulators of the canonical pathways identified, highlighting the need for additional research to investigate their potential utility as biomarkers.

10.
Angew Chem Int Ed Engl ; : e202413651, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363740

RESUMO

The chemical synthesis of histones with homogeneous modifications is a potent approach for quantitatively deciphering the functional crosstalk between different post-translational modifications (PTMs). Here, we developed an expedient site-specific (poly)ubiquitylation strategy (CAEPL, Cysteine-Aminoethylation coupled with Enzymatic Protein Ligation), which integrates the Cys-aminoethylation reaction with the process of ubiquitin-activating enzyme UBA1-assisted native chemical ligation. Using this strategy, we successfully prepared monoubiquitylated and K63-linked di- and tri-ubiquitylated linker histone H1.0 proteins, which were incorporated into individual chromatosomes. Quantitative biochemical analysis of different RNF168 constructs on ubiquitylated chromatosomes with different ubiquitin chain lengths demonstrated that K63-linked polyubiquitylated H1.0 could directly stimulate RNF168 ubiquitylation activity by enhancing the affinity between RNF168 and chromatosome. Subsequent cryo-EM structural analysis of the RNF168/UbcH5c-Ub/H1.0-K63-Ub3 chromatosome complex revealed the potential recruitment orientation between RNF168 UDM1 domain and K63-linked ubiquitin chain on H1.0. Finally, we explored the impact of H1.0 ubiquitylation on RNF168 activity in the context of asymmetric H1.0-K63-Ub3 di-nucleosome substrate, revealing a comparable stimulation effect of both the inter- and intra-nucleosomal crosstalk. Overall, our study highlights the significance of access to structurally-defined polyubiquitylated H1.0 by CAEPL strategy, enabling in-depth mechanistic investigations of in-trans PTM crosstalk between linker histone H1.0 and core histone H2A ubiquitylation.

11.
Front Plant Sci ; 15: 1456414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39363922

RESUMO

Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.

12.
FEBS Lett ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367524

RESUMO

Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.

13.
Mol Ecol ; : e17541, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367587

RESUMO

The role of epigenetics in regulating caste polyphenism in social insects has been debated. Here, we tested the importance of histone de/acetylation processes for the maintenance of queen hallmarks like a high fecundity and a long lifespan. To this end, we performed RNA interference experiments against histone deacetylase 3 (HDAC3) in the termite Cryptotermes secundus. Fat body transcriptomes and chemical communication profiles revealed that silencing of HDAC3 leads to signals indicative of queen hallmarks. This includes fostering of queen signalling, defence against ageing and a reduction of life-shortening IIS (insulin/insulin-like growth factor signalling) and endocrine JH (juvenile hormone) signalling via Kr-h1 (Krüppel-homologue 1). These observed patterns were similar to those of a protein-enriched diet, which might imply that histone acetylation conveys nutritional effects. Strikingly, in contrast to solitary insects, reduced endocrine JH signalling had no negative effect on fecundity-related vitellogenesis in the fat bodies. This suggests an uncoupling of longevity pathways from fecundity in fat bodies, which can help explain queens' extraordinary lifespans combined with high fecundity.

15.
Environ Epigenet ; 10(1): dvae013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372708

RESUMO

This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.

16.
J Biol Chem ; : 107860, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374784

RESUMO

Gfi1 is a transcriptional repressor that plays a critical role in hematopoiesis. The repressive activity of Gfi1 is mediated mainly by its SNAG domain that interacts with and thereby recruits the histone demethylase LSD1 to its target genes. An important function of Gfi1 is to protect hematopoietic cells against stress-induced apoptosis, which has been attributed to its participation in the posttranscriptional modifications of p53 protein, leading to suppression of p53 activity. In this study, we show that Gfi1 upregulated the expression of Hemgn, a nuclear protein, through a 16-bp promoter region spanning from +47 to +63 bp relative to the transcription start site (TSS), which was dependent on its interaction with LSD1. We further demonstrate that Gfi1, Ikaros and PU.1 bound to this 16-bp region. However, while Ikaros activated Hemgn and collaborated with Gfi1 to augment Hemgn expression, it was not required for Gfi1-mediated Hemgn upregulation. In contrast, PU.1 repressed Hemgn and inhibited Hemgn upregulation by Gfi1. Notably, PU.1 knockdown and deficiency, while augmenting Hemgn expression, abolished Hemgn upregulation by Gfi1. PU.1 (Spi-1) has been shown to be repressed by Gfi1. We show here that PU.1 repression by Gfi1 preceded and correlated well with Hemgn upregulation. Thus, our date strongly suggest that Gfi1 upregulates Hemgn by repressing PU.1. In addition, we demonstrate that Hemgn upregulation contributed to the anti-apoptotic activity of Gfi1 in a p53-independent manner.

17.
Ann Pharm Fr ; 2024 Oct 05.
Artigo em Francês | MEDLINE | ID: mdl-39374866

RESUMO

Alcohol consumption is a major public health issue. Patients with Alcohol Use Disorder (AUD) can benefit from five treatments that preferentially target membrane receptors, and whose efficacy is generally modest. However, a large body of experimental evidence points to an important role for epigenetics in the effects of alcohol consumption, and epidrugs that modify the epigenome offer an interesting alternative to current therapeutic options. This article reviews the most striking experimental evidence obtained at different ages in animal models, before comparing it with data obtained in humans and concluding on the relevance of using epidrugs. Finally, a new therapeutic option is suggested between psychedelics, recent molecules of interest, and epigenetic factors in alcohol intake.

18.
Eur J Pharm Sci ; 203: 106921, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357770

RESUMO

Histone deacetylases (HDACs) are important epigenetic regulators of gene expression and various cellular processes, and are potential targets for anticancer therapy. In particular, HDAC8 is a promising therapeutic target for childhood neuroblastoma. To date, five HDAC inhibitors have been approved as anticancer drugs; however, all are non-selective HDAC inhibitors with various side effects. Furthermore, many promising HDAC inhibitors incorporate hydroxamic acid as a zinc binding group (ZBG), which may be associated with toxicity. Therefore, identification of isoform-selective HDAC inhibitors with novel ZBG is crucial. Here, a series of sulfur-based selective HDAC8 inhibitors featuring a novel ZBG were identified by modifying the early hit, ajoene, a component of garlic. Structure-activity relationship studies uncovered potent and selective HDAC8 inhibitors, and docking studies provided a structural rationale for HDAC8 inhibitory activity. One of the potent compounds, (Z)-1-phenyl-7-(4-methoxyphenyl)-2,3,7-trithiahepta-4-ene-7-oxide (15c), exhibited antiproliferative activity, with a GI50 of 2 µM, against neuroblastoma cell lines. 15c also showed significant in vivo efficacy in a neuroblastoma BE(2)-C xenograft model.

19.
BMC Genomics ; 25(1): 932, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367346

RESUMO

Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.


Assuntos
Dinoflagellida , Genômica , Dinoflagellida/genética , Genômica/métodos , Genoma de Protozoário , Evolução Molecular , Filogenia
20.
Proc Natl Acad Sci U S A ; 121(42): e2317694121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39388266

RESUMO

Histone Deacetylase 3 (HDAC3) function in vivo is nuanced and directed in a tissue-specific fashion. The importance of HDAC3 in Kras mutant lung tumors has recently been identified, but HDAC3 function in this context remains to be fully elucidated. Here, we identified HDAC3 as a lung tumor cell-intrinsic transcriptional regulator of the tumor immune microenvironment. In Kras mutant lung cancer cells, we found that HDAC3 is a direct transcriptional repressor of a cassette of secreted chemokines, including Cxcl10. Genetic and pharmacological inhibition of HDAC3 robustly up-regulated this gene set in human and mouse Kras, LKB1 (KL) and Kras, p53 (KP) mutant lung cancer cells through an NF-κB/p65-dependent mechanism. Using genetically engineered mouse models, we found that HDAC3 inactivation in vivo induced expression of this gene set selectively in lung tumors and resulted in enhanced T cell recruitment at least in part via Cxcl10. Furthermore, we found that inhibition of HDAC3 in the presence of Kras pathway inhibitors dissociated Cxcl10 expression from that of immunosuppressive chemokines and that combination treatment of entinostat with trametinib enhanced T cell recruitment into lung tumors in vivo. Finally, we showed that T cells contribute to in vivo tumor growth control in the presence of entinostat and trametinib combination treatment. Together, our findings reveal that HDAC3 is a druggable endogenous repressor of T cell recruitment into Kras mutant lung tumors.


Assuntos
Quimiocina CXCL10 , Histona Desacetilases , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Mutação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pirimidinonas/farmacologia , Piridonas/farmacologia , Microambiente Tumoral/imunologia , Transcrição Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Benzamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...