Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 167: 103800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146898

RESUMO

In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.


Assuntos
Aspergillus nidulans , Histonas , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Processamento de Proteína Pós-Traducional , Heterocromatina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo
2.
Methods ; 184: 102-111, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014607

RESUMO

The development of universal, broadly applicable methods for histone extraction from animal cells and tissues has unlocked the ability to compare these epigenetic-influencing proteins across tissue types, healthy and diseased states, and cancerous versus normal cells. However, for plants and green algae, a quick and easily implemented histone extraction method has yet to be developed. Here, we report an optimized method that provides a unified approach to extract histones for the green microalgal species Chlamydomonas reinhardtii and Scenedesmus dimorphus as well as for maize (corn) leaf tissue. Histone extraction methods include treatment with high salt concentrations and acidification. Preparations of nuclei can be made in ∼3.5 h and histones extracted in ∼3.5 h either immediately or nuclei may be frozen and histone proteins can be later extracted without a change in histone PTM patterns. To examine the efficiency of the new methods provided, we performed both qualitative and quantitative analysis of salt and acid-extracted whole histone proteins (SAEWH) via SDS-PAGE gel electrophoresis and intact protein mass spectrometry. SDS-PAGE analysis indicated that histone yields decrease when using walled Chlamydomonas strains relative to cell-wall-less mutants. Using top-down mass spectrometry (TDMS) for intact protein analysis, we confirmed the presence of H4K79me1 in multiple algal species; however, this unique modification was not identified in corn leaf tissue and has not been reported elsewhere. TDMS measurements of SAEWH extracts also revealed that oxidation which occurs during the histone extraction process does not increase with exposure of harvested algal cells, their nuclei and the extracted histone samples to light.


Assuntos
Histonas/isolamento & purificação , Espectrometria de Massas/métodos , Proteínas de Plantas/isolamento & purificação , Chlamydomonas reinhardtii/fisiologia , Eletroforese em Gel de Poliacrilamida/métodos , Código das Histonas , Histonas/metabolismo , Microalgas/fisiologia , Fotossíntese/genética , Folhas de Planta/metabolismo , Zea mays/fisiologia
3.
MethodsX ; 5: 244-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090702

RESUMO

Zebrafish is a powerful animal model used to study vertebrate embryogenesis, organ development and diseases (Gut et al., 2017) [1]. The usefulness of the model was established as a result of various large forward genetic screens identifying mutants in almost every organ or cell type (Driever et al., 1996; Haffter et al., 1996) [[2], [3]]. More recently, the advent of genome editing methodologies, including TALENs (Sander et al., 2011) [4] and the CRISPR/Cas9 technology (Hwang et al., 2013) [5], led to an increase in the production of zebrafish mutants. A number of these mutations are homozygous lethal at the embryonic or larval stages preventing the generation of homozygous mutant zebrafish lines. Here, we present a method allowing both genotyping and phenotype analyses of mutant zebrafish larvae from heterozygous zebrafish incrosses. The procedure is based on the genotyping of the larval tail after transection, whereas phenotypic studies are performed on the anterior part of the zebrafish larvae. •The method includes (i) a protocol for genotyping, (ii) protocols for paraffin embedding and histological analyses, (iii) protocols for protein and histone extraction and characterization by Western blot, (iv) protocols for RNA extraction and characterization by RT-PCR, and (v) protocols to study caudal spinal cord regeneration.•The technique is optimized in order to be applied on single zebrafish embryos and larvae.

4.
Methods Mol Biol ; 1528: 173-198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27854022

RESUMO

Acid-urea gel electrophoresis offers significant advantages over SDS-PAGE for analysis of post-translational protein modifications, being capable of resolving proteins of similar size but varying in charge. Hence, it can be used to separate protein variants with small charge-altering differences in primary sequence, and is particularly useful in the analysis of histones whose charge variation arises from post-translational modification, such as phosphorylation or acetylation. On acid-urea gels, histones that carry multiple modifications, each with a characteristic charge, are resolved into distinct bands, the so-called "histone ladder." Thus, the extent and distribution of different modification states of histones can be visualized. Here, we describe the analysis of histone H3 by acid-urea gel electrophoresis and western blotting.


Assuntos
Western Blotting/métodos , Eletroforese/métodos , Histonas/metabolismo , Ureia/química , Acetilação , Animais , Linhagem Celular , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...