Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
1.
Stem Cell Res Ther ; 15(1): 350, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380045

RESUMO

BACKGROUND: The histone-lysine N-methyltransferase SMYD1, which is specific to striated muscle, plays a crucial role in regulating early heart development. Its deficiency has been linked to the occurrence of congenital heart disease. Nevertheless, the precise mechanism by which SMYD1 deficiency contributes to congenital heart disease remains unclear. METHODS: We established a SMYD1 knockout pluripotent stem cell line and a doxycycline-inducible SMYD1 expression pluripotent stem cell line to investigate the functions of SMYD1 utilizing an in vitro-directed myocardial differentiation model. RESULTS: Cardiomyocytes lacking SMYD1 displayed drastically diminished differentiation efficiency, concomitant with heightened proliferation capacity of cardiac progenitor cells during the early cardiac differentiation stage. These cellular phenotypes were confirmed through experiments inducing the re-expression of SMYD1. Transcriptome sequencing and small molecule inhibitor intervention suggested that the GSK3ß/ß-catenin&ERK signaling pathway was involved in the proliferation of cardiac progenitor cells. Chromatin immunoprecipitation demonstrated that SMYD1 acted as a transcriptional activator of GSK3ß through histone H3 lysine 4 trimethylation. Additionally, dual-luciferase analyses indicated that SMYD1 could interact with the promoter region of GSK3ß, thereby augmenting its transcriptional activity. Moreover, administering insulin and Insulin-like growth factor 1 can enhance the efficacy of myocardial differentiation in SMYD1 knockout cells. CONCLUSIONS: Our research indicated that the participation of SMYD1 in the GSK3ß/ß-catenin&ERK signaling cascade modulated the proliferation of cardiac progenitor cells during myocardial differentiation. This process was partly reliant on the transcription of GSK3ß. Our research provided a novel insight into the genetic modification effect of SMYD1 during early myocardial differentiation. The findings were essential to the molecular mechanism and potential interventions for congenital heart disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Histona-Lisina N-Metiltransferase , Miócitos Cardíacos , beta Catenina , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , beta Catenina/metabolismo , beta Catenina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Sistema de Sinalização das MAP Quinases , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Histonas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Linhagem Celular , Proteínas de Ligação a DNA , Fatores de Transcrição
2.
Biol Open ; 13(10)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39387302

RESUMO

The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.


Assuntos
Diferenciação Celular , Células Epiteliais , Pulmão , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Pulmão/embriologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Biomarcadores , Proteínas Fetais/metabolismo , Proteínas Fetais/genética , Antígenos CD/metabolismo , Técnicas de Cultura de Células , Molécula de Adesão de Leucócito Ativado
3.
Sci Rep ; 14(1): 23050, 2024 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367051

RESUMO

Neuroblastoma is the most common pediatric extracranial solid tumor and is derived from trunk neural crest cells (tNCC) and its progenitor sympathoadrenal (SA) cells. While human pluripotent stem cell (PSC) models of neuroblastoma have been described, the PSC were differentiated using protocols that made neural crest cells, but not specifically the trunk subtype. Here, we compared four recent protocols to differentiate pluripotent stem cells (PSC) toward SA cells and examined their efficiency at generating SA cells along with earlier cell states (neuromesodermal progenitors [NMP], tNCC), as well as generating MYCN-driven tumors. Interestingly, the protocols that created cells with the highest level of NMP markers did not produce cells with the highest tNCC or SA cell markers. We identified a protocol that consistently produced cells with the highest level of SA markers using two PSC lines of different genders. This protocol also generated tumors with the highest level of PHOX2B, a marker of neuroblastoma. Transcriptionally, however, each protocol generates tumors that resemble neuroblastoma. Two of the protocols repeatedly produced adrenergic neuroblastoma whereas the other two protocols were ambiguous. Thus, we identified a protocol that reliably generates adrenergic neuroblastoma.


Assuntos
Diferenciação Celular , Crista Neural , Neuroblastoma , Células-Tronco Pluripotentes , Humanos , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Feminino , Masculino , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
4.
Cell Stem Cell ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232561

RESUMO

There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and ß cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated ß cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both ß cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced ß cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated ß cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of ß cell damage during viral exposure.

5.
Theranostics ; 14(12): 4894-4915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239522

RESUMO

Rationale: Regulatory processes of transcription factors (TFs) shape heart development and influence the adult heart's response to stress, contributing to cardiac disorders. Despite their significance, the precise mechanisms underpinning TF-mediated regulation remain elusive. Here, we identify that EBF1, as a TF, is highly expressed in human heart tissues. EBF1 is reported to be associated with human cardiovascular disease, but its roles are unclear in heart. In this study, we investigated EBF1 function in cardiac system. Methods: RNA-seq was utilized to profile EBF1 expression patterns. CRISPR/Cas9 was utilized to knock out EBF1 to investigate its effects. Human pluripotent stem cells (hPSCs) differentiated into cardiac lineages were used to mimic cardiac development. Cardiac function was evaluated on mouse model with Ebf1 knockout by using techniques such as echocardiography. RNA-seq was conducted to analyze transcriptional perturbations. ChIP-seq was employed to elucidate EBF1-bound genes and the underlying regulatory mechanisms. Results: EBF1 was expressed in some human and mouse cardiomyocyte. Knockout of EBF1 inhibited cardiac development. ChIP-seq indicated EBF1's binding on promoters of cardiogenic TFs pivotal to cardiac development, facilitating their transcriptional expression and promoting cardiac development. In mouse, Ebf1 depletion triggered transcriptional perturbations of genes, resulting in cardiac remodeling. Mechanistically, we found that EBF1 directly bound to upstream chromatin regions of cardiac hypertrophy-inducing genes, contributing to cardiac hypertrophy. Conclusions: We uncover the mechanisms underlying EBF1-mediated regulatory processes, shedding light on cardiac development, and the pathogenesis of cardiac remodeling. These findings emphasize EBF1's critical role in orchestrating diverse aspects of cardiac processes and provide a promising therapeutic intervention for cardiomyopathy.


Assuntos
Perfilação da Expressão Gênica , Miócitos Cardíacos , Transativadores , Animais , Humanos , Camundongos , Transativadores/genética , Transativadores/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Coração/fisiopatologia , Camundongos Knockout , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Sistemas CRISPR-Cas/genética
6.
Ecotoxicol Environ Saf ; 285: 117063, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299213

RESUMO

Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.

7.
Adv Healthc Mater ; : e2402199, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300854

RESUMO

Recently, it has been recognized that natural extracellular matrix (ECM) and tissues are viscoelastic, while only elastic properties have been investigated in the past. How the viscoelastic matrix regulates stem cell patterning is critical for cell-ECM mechano-transduction. Here, this study fabricated different methacrylated hyaluronic acid (HA) hydrogels using covalent cross-linking, consisting of two gels with similar elasticity (stiffness) but different viscoelasticity, and two gels with similar viscoelasticity but different elasticity (stiffness). Meanwhile, a second set of dual network hydrogels are fabricated containing both covalent and coordinated cross-links. Human spinal cord organoid (hSCO) patterning in HA hydrogels and co-culture with isogenic human blood vessel organoids (hBVOs) are investigated. The viscoelastic hydrogels promote regional hSCO patterning compared to the elastic hydrogels. More viscoelastic hydrogels can promote dorsal marker expression, while softer hydrogels result in higher interneuron marker expression. The effects of viscoelastic properties of the hydrogels become more dominant than the stiffness effects in the co-culture of hSCOs and hBVOs. In addition, more viscoelastic hydrogels can lead to more Yes-associated protein nuclear translocation, revealing the mechanism of cell-ECM mechano-transduction. This research provides insights into viscoelastic behaviors of the hydrogels during human organoid patterning with ECM-mimicking in vitro microenvironments for applications in regenerative medicine.

8.
Biology (Basel) ; 13(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39336111

RESUMO

Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms.

9.
J Mol Cell Cardiol ; 196: 52-70, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39222876

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.

10.
EMBO Rep ; 25(10): 4433-4464, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256596

RESUMO

The embryonic cell surface is rich in glycosphingolipids (GSLs), which change during differentiation. The reasons for GSL subgroup variation during early embryogenesis remain elusive. By combining genomic approaches, flow cytometry, confocal imaging, and transcriptomic data analysis, we discovered that α1,2-fucosylated GSLs control the differentiation of human pluripotent cells (hPCs) into germ layer tissues. Overexpression of α1,2-fucosylated GSLs disrupts hPC differentiation into mesodermal lineage and reduces differentiation into cardiomyocytes. Conversely, reducing α1,2-fucosylated groups promotes hPC differentiation and mesoderm commitment in response to external signals. We find that bone morphogenetic protein 4 (BMP4), a mesodermal gene inducer, suppresses α1,2-fucosylated GSL expression. Overexpression of α1,2-fucosylated GSLs impairs SMAD activation despite BMP4 presence, suggesting α-fucosyl end groups as BMP pathway regulators. Additionally, the absence of α1,2-fucosylated GSLs in early/late mesoderm and primitive streak stages in mouse embryos aligns with the hPC results. Thus, α1,2-fucosylated GSLs may regulate early cell-fate decisions and embryo development by modulating cell signaling.


Assuntos
Proteína Morfogenética Óssea 4 , Diferenciação Celular , Fucosiltransferases , Glicoesfingolipídeos , Mesoderma , Glicoesfingolipídeos/metabolismo , Humanos , Diferenciação Celular/genética , Animais , Camundongos , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Proteína Morfogenética Óssea 4/metabolismo , Mesoderma/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Fucose/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Camadas Germinativas/metabolismo , Embrião de Mamíferos/metabolismo
11.
Regen Biomater ; 11: rbae091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233867

RESUMO

Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.

12.
EMBO Rep ; 25(10): 4311-4336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232200

RESUMO

Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.


Assuntos
Diferenciação Celular , Vírus da Hepatite B , Hepatite B , Vírus Delta da Hepatite , Hepatócitos , Células-Tronco Pluripotentes , Humanos , Vírus Delta da Hepatite/fisiologia , Vírus Delta da Hepatite/genética , Hepatócitos/virologia , Hepatócitos/metabolismo , Células-Tronco Pluripotentes/virologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Hepatite B/virologia , Hepatite D/virologia , Replicação Viral , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Internalização do Vírus
13.
Immunity ; 57(9): 2216-2231.e11, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151426

RESUMO

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.


Assuntos
Microglia , Fagocitose , Fagossomos , Humanos , Microglia/metabolismo , Fagossomos/metabolismo , Encéfalo/metabolismo , Encéfalo/citologia , Células Cultivadas , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos
14.
Cells ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39195283

RESUMO

Human pluripotent stem cells (hPSCs) are pivotal in regenerative medicine, yet their in vitro expansion often leads to genetic abnormalities, raising concerns about their safety in clinical applications. This study analyzed ten human embryonic stem cell lines across multiple passages to elucidate the dynamics of chromosomal abnormalities and single-nucleotide variants (SNVs) in 380 cancer-related genes. Prolonged in vitro culture resulted in 80% of the lines acquiring gains of chromosome 20q or 1q, both known for conferring an in vitro growth advantage. 70% of lines also acquired other copy number variants (CNVs) outside the recurrent set. Additionally, we detected 122 SNVs in 88 genes, with all lines acquiring at least one de novo SNV during culture. Our findings showed higher loads of both CNVs and SNVs at later passages, which were due to the cumulative acquisition of mutations over a longer time in culture, and not to an increased rate of mutagenesis over time. Importantly, we observed that SNVs and rare CNVs followed the acquisition of chromosomal gains in 1q and 20q, while most of the low-passage and genetically balanced samples were devoid of cancer-associated mutations. This suggests that recurrent chromosomal abnormalities are potential drivers for the acquisition of other mutations.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Mutação , Neoplasias , Células-Tronco Pluripotentes , Humanos , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Pluripotentes/metabolismo , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Técnicas de Cultura de Células/métodos
15.
Front Neural Circuits ; 18: 1453958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161368

RESUMO

Recent advances in human pluripotent stem cell (hPSC) technologies have prompted the emergence of new research fields and applications for human neurons and brain organoids. Brain organoids have gained attention as an in vitro model system that recapitulates the higher structure, cellular diversity and function of the brain to explore brain development, disease modeling, drug screening, and regenerative medicine. This progress has been accelerated by abundant interactions of brain organoid technology with various research fields. A cross-disciplinary approach with human brain organoid technology offers a higher-ordered advance for more accurately understanding the human brain. In this review, we summarize the status of neural induction in two- and three-dimensional culture systems from hPSCs and the modeling of neurodegenerative diseases using brain organoids. We also highlight the latest bioengineered technologies for the assembly of spatially higher-ordered neural tissues and prospects of brain organoid technology toward the understanding of the potential and abilities of the human brain.


Assuntos
Encéfalo , Organoides , Humanos , Encéfalo/fisiologia , Encéfalo/citologia , Organoides/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais
16.
Sci Rep ; 14(1): 19863, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191834

RESUMO

The significant advances in the differentiation of human pluripotent stem (hPS) cells into pancreatic endocrine cells, including functional ß-cells, have been based on a detailed understanding of the underlying developmental mechanisms. However, the final differentiation steps, leading from endocrine progenitors to mono-hormonal and mature pancreatic endocrine cells, remain to be fully understood and this is reflected in the remaining shortcomings of the hPS cell-derived islet cells (SC-islet cells), which include a lack of ß-cell maturation and variability among different cell lines. Additional signals and modifications of the final differentiation steps will have to be assessed in a combinatorial manner to address the remaining issues and appropriate reporter lines would be useful in this undertaking. Here we report the generation and functional validation of hPS cell reporter lines that can monitor the generation of INS+ and GCG+ cells and their resolution into mono-hormonal cells (INSeGFP, INSeGFP/GCGmCHERRY) as well as ß-cell maturation (INSeGFP/MAFAmCHERRY) and function (INSGCaMP6). The reporter hPS cell lines maintained strong and widespread expression of pluripotency markers and differentiated efficiently into definitive endoderm and pancreatic progenitor (PP) cells. PP cells from all lines differentiated efficiently into islet cell clusters that robustly expressed the corresponding reporters and contained glucose-responsive, insulin-producing cells. To demonstrate the applicability of these hPS cell reporter lines in a high-content live imaging approach for the identification of optimal differentiation conditions, we adapted our differentiation procedure to generate SC-islet clusters in microwells. This allowed the live confocal imaging of multiple SC-islets for a single condition and, using this approach, we found that the use of the N21 supplement in the last stage of the differentiation increased the number of monohormonal ß-cells without affecting the number of α-cells in the SC-islets. The hPS cell reporter lines and the high-content live imaging approach described here will enable the efficient assessment of multiple conditions for the optimal differentiation and maturation of SC-islets.


Assuntos
Diferenciação Celular , Genes Reporter , Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular , Insulina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética
17.
Stem Cell Reports ; 19(8): 1217-1232, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38964325

RESUMO

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.


Assuntos
Cromossomos Humanos Par 1 , Células-Tronco Pluripotentes , Humanos , Cromossomos Humanos Par 1/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Técnicas de Cultura de Células/métodos , Apoptose/genética , Células Alimentadoras/citologia , Linhagem Celular , Células Cultivadas
18.
Adv Mater ; 36(36): e2403952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39015054

RESUMO

Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Polímeros , Humanos , Técnicas de Cultura de Células/métodos , Polímeros/química , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Laminina/química , Laminina/farmacologia , Proliferação de Células/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proteoglicanas/química , Proteoglicanas/farmacologia , Linhagem Celular , Colágeno/química , Diferenciação Celular/efeitos dos fármacos , Combinação de Medicamentos
19.
Biol Psychiatry ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029776

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, following Alzheimer's. It is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD; however, the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. METHODS: Here, we used 2-dimensional cultures of human pluripotent stem cell-derived microglia and transplantation of these cells into the mouse brain to assess the cell autonomous effects of the A53T mutation on human microglia. RESULTS: We found that A53T mutant human microglia had an intrinsically increased propensity toward proinflammatory activation upon inflammatory stimulus. Additionally, transplanted A53T mutant microglia showed a strong decrease in catalase expression in noninflammatory conditions and increased oxidative stress. CONCLUSIONS: Our results indicate that A53T mutant human microglia display cell autonomous phenotypes that may worsen neuronal damage in early-onset PD.

20.
Stem Cell Res Ther ; 15(1): 223, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044210

RESUMO

BACKGROUND: Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS: In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-ß. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS: The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-ß-induced activation-related transcriptome. However, TGF-ß-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-ß. CONCLUSIONS: scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-ß-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.


Assuntos
Células Estreladas do Fígado , Ácido Palmítico , Fator de Crescimento Transformador beta , Vitamina A , Humanos , Vitamina A/farmacologia , Vitamina A/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Ácido Palmítico/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Metabolismo Energético/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...