Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928038

RESUMO

Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Secreção de Insulina , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Secreção de Insulina/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Regulação Alostérica/efeitos dos fármacos , Ratos , Humanos , Insulina/metabolismo , Glucose/metabolismo , AMP Cíclico/metabolismo , Linhagem Celular , Hipoglicemiantes/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo
2.
Nat Prod Res ; : 1-8, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340357

RESUMO

Progressive decline in ß cell function and reduction in the ß cell mass is important in type 2 diabetes. Here, we tested the hypothesis that madecassoside's previously demonstrated in vivo protective effects on the ß cell in experimental diabetes were exerted directly. We investigated the effects of madecassoside in protecting a ß cell line (INS-1E) against a variety of agents. INS-1E cells were treated with madecassoside in the presence of high glucose (HG), a cytokine mixture, hydrogen peroxide (H2O2), or streptozotocin (STZ). HG, the cytokine mixture, H2O2 and STZ each produced a significant decrease in cell viability; this was significantly reversed by madecassoside. Pre-treatment with madecassoside reduced the number of apoptotic cells induced by HG, the cytokine mixture, H2O2, and STZ, and concentration-dependently reduced ROS production. Madecassoside also significantly enhanced glucose-induced insulin secretion. The results suggest that madecassoside's in vivo effects are exerted directly on the ß cell.

3.
ACS Appl Bio Mater ; 6(10): 4277-4289, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37699572

RESUMO

Onivyde was approved by the Food and Drug Administration (FDA) in 2015 for the treatment of solid tumors, including metastatic pancreatic cancer. It is designed to encapsulate irinotecan at high concentration, increase its blood-circulation lifetime, and deliver it to cells where it is enzymatically converted into SN-38, a metabolite with 100- to 1000-fold higher anticancer activity. Despite a rewarding clinical path, little is known about the physical state of encapsulated irinotecan within Onivyde and how this synthetic identity changes throughout the process from manufacturing to intracellular processing. Herein, we exploit irinotecan intrinsic fluorescence and fluorescence lifetime imaging microscopy (FLIM) to selectively probe the supramolecular organization of the drug. FLIM analysis on the manufacturer's formulation reveals the presence of two coexisting physical states within Onivyde liposomes: (i) gelated/precipitated irinotecan and (ii) liposome-membrane-associated irinotecan, the presence of which is not inferable from the manufacturer's indications. FLIM in combination with high-performance liquid chromatography (HPLC) and a membrane-impermeable dynamic quencher of irinotecan reveals rapid (within minutes) and complete chemical dissolution of the gelated/precipitated phase upon Onivyde dilution in standard cell-culturing medium with extensive leakage of the prodrug from liposomes. Indeed, confocal imaging and cell-proliferation assays show that encapsulated and nonencapsulated irinotecan formulations are similar in terms of cell-uptake mechanism and cell-division inhibition. Finally, 2-channel FLIM analysis discriminates the signature of irinotecan from that of its red-shifted SN-38 metabolite, demonstrating the appearance of the latter as a result of Onivyde intracellular processing. The findings presented in this study offer fresh insights into the synthetic identity of Onivyde and its transformation from production to in vitro administration. Moreover, these results serve as another validation of the effectiveness of FLIM analysis in elucidating the supramolecular organization of encapsulated fluorescent drugs. This research underscores the importance of leveraging advanced imaging techniques to deepen our understanding of drug formulations and optimize their performance in delivery applications.


Assuntos
Lipossomos , Neoplasias Pancreáticas , Estados Unidos , Humanos , Irinotecano/química , Irinotecano/uso terapêutico , Lipossomos/química , Fluorescência , Neoplasias Pancreáticas/tratamento farmacológico
4.
J Proteomics ; 273: 104796, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538968

RESUMO

Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic ß-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in ß-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated ß-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.


Assuntos
Glicopeptídeos , Fosfopeptídeos , Fosfopeptídeos/análise , Glicopeptídeos/análise , Cisteína , Proteoma , Citocinas , Proteômica/métodos , Processamento de Proteína Pós-Traducional
5.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768769

RESUMO

Human amylin or islet amyloid polypeptide (hIAPP) is synthesized in the pancreatic ß-cells and has been shown to contribute to the pathogenesis of type 2 diabetes (T2D) in vitro and in vivo. This study compared amylin oligomerization/expression and signal transduction under endoplasmic reticulum (ER) stress and oxidative stress. pCMV-hIAPP-overexpressing INS-1E cells presented different patterns of amylin oligomerization/expression under ER stress and oxidative stress. Amylin oligomerization/expression under ER stress showed three amylin oligomers of less than 15 kDa size in pCMV-hIAPP-overexpressing cells, while one band was detected under oxidative stress. Under ER stress conditions, HIF1α, p-ERK, CHOP, Cu/Zn-SOD, and Bax were significantly increased in pCMV-hIAPP-overexpressing cells compared to the pCMV-Entry-expressing cells (control), whereas p-Akt, p-mTOR, Mn-SOD, catalase, and Bcl-2 were significantly decreased. Under oxidative stress conditions, HIF1α, p-ERK, CHOP, Mn-SOD, catalase, and Bcl-2 were significantly reduced in pCMV-hIAPP-overexpressing cells compared to the control, whereas p-mTOR, Cu/Zn-SOD, and Bax were significantly increased. In mitochondrial oxidative phosphorylation (OXPHOS), the mitochondrial complex I and complex IV were significantly decreased under ER stress conditions and significantly increased under oxidative stress conditions in pCMV-hIAPP-overexpressing cells compared to the control. The present study results demonstrate that amylin undergoes oligomerization under ER stress in pCMV-hIAPP-overexpressing cells. In addition, human amylin overexpression under ER stress in the pancreatic ß cells may enhance amylin protein aggregation, resulting in ß-cell dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/biossíntese , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Estresse Oxidativo , Animais , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Complexo I de Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Front Bioeng Biotechnol ; 9: 729057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568302

RESUMO

Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.

7.
Nat Prod Res ; 35(22): 4627-4631, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31797687

RESUMO

Currently, type 2 diabetes mellitus (T2D) has emerged as global burden disease. Herbal drugs with antidiabetic activities are attracting the attention. Madecassoside and catalpol are herbal compounds having strong antioxidant and glucose lowering activity. Madecassoside and catalpol were investigated for their effect on insulin sensitivity using pancreatic INS-1E cells. Cytotoxicity of these compounds was evaluated by MTT assay. Glucose-stimulated insulin secretion (GSIS) and expression of insulin signalling proteins were studied in presence of madecassoside and catalpol. Results revealed that madecassoside and catalpol enhanced the GSIS without cytotoxic effect. Madecassoside (30 µM) and catalpol (40 µM) increased the insulin secretion in response to high glucose (16.7 mM) stimulation. Subsequently, madecassoside and catalpol showed elevated expression of p-IRS-1, Akt, and p-Akt proteins. Madecassoside and catalpol after 24 h of incubation in pancreatic INS-1E cells with high glucose concentration (30 mM) ameliorated the insulin secretion.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , Animais , Linhagem Celular , Glucose , Insulina , Glucosídeos Iridoides , Ratos , Triterpenos
8.
J Microencapsul ; 36(5): 421-431, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31401914

RESUMO

This work describes viability and distribution of INS-1E beta cells in shell-crosslinked alginate capsules, focussing on cells located near the capsule surface. Capsules were formed by air-shearing alginate suspensions of INS-1E cells into a gelling bath, and coating with poly-l-lysine (PLL) and 50% hydrolysed poly(methylvinylether-alt-maleic anhydride) to form crosslinked networks reinforcing the capsule surfaces. The percentage of cells at the capsule surface were determined using 2D and 3D confocal colocalization mapping. Encapsulated INS-1E cells showed high cell viability and progressive cell clustering out to six weeks. About 30% of cells were initially colocated with the 20 micrometer thick alginate-PLL-PMM50 shell, with 7% of cells protruded at the capsule surfaces, both reflecting random cell distributions. Protruding cells may cause cell-based immune responses, weaken capsules, and potentially result in cell escape from the capsules. The data shown indicate that reinforcing capsules with crosslinked shells may assist in preventing cell exposure and escape.


Assuntos
Alginatos/química , Células Imobilizadas/citologia , Reagentes de Ligações Cruzadas/química , Células Secretoras de Insulina/citologia , Polilisina/análogos & derivados , Animais , Cápsulas/química , Linhagem Celular , Extensões da Superfície Celular/ultraestrutura , Sobrevivência Celular , Células Imobilizadas/ultraestrutura , Géis/química , Células Secretoras de Insulina/ultraestrutura , Anidridos Maleicos/química , Polilisina/química , Ratos
9.
Int J Endocrinol Metab ; 17(1): e74255, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30881469

RESUMO

BACKGROUND: Vitamin D affects the pancreatic beta cell function and in vitro studies have shown that vitamin D may influence insulin secretion, apoptosis, and gene regulation. However, the outcomes have differed and there has been uncertainty regarding the effect of different vitamin D metabolites on insulin secretion. OBJECTIVES: We hypothesized that vitamin D could increase insulin secretion in insulin producing beta cells and investigated the effect of 25(OH) vitamin D and 1,25(OH)2 vitamin D on insulin secretion. METHODS: The study was conducted in INS1E cells, an established insulinoma cell line from rat. The cells were divided into three groups; a control group, a group with 1,25(OH)2 vitamin D enriched medium (10 nM), and a group with 25(OH) vitamin D (10 nM) supplemented medium. After 72 hours of treatment, the cells underwent glucose stimulation at different concentrations (0, 5, 11, and 22 mM) for 60 minutes. RESULTS: INS1E cells treated with 1,25(OH)2 vitamin D showed a trend towards increased insulin secretion at all glucose concentrations compared to control cells and at 22 mM glucose, the difference was significant (18.40 +/- 1.97 vs 12.90 +/- 2.22 nmol/L, P < 0.05). However, pretreatment with 25(OH) vitamin D did not show any significant increase in insulin secretion compared to cells without vitamin D treatment. There was no difference in insulin secretion in cells not stimulated with glucose. CONCLUSIONS: Treatment with 1,25(OH)2 vitamin D combined with high levels of glucose increased insulin secretion in INS1E cells, whereas 25(OH) vitamin D had no effect. This suggests that glucose stimulated insulin secretion in INS1E beta cells appears to be related to the type of vitamin D metabolite treatment.

10.
Pflugers Arch ; 471(2): 337-345, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30310992

RESUMO

The clonal INS-1E beta-cell line has proven to be instrumental for numerous studies investigating the mechanisms of glucose-stimulated insulin secretion. The composition of its culture medium has not changed over the years, although some compounds have been recently highlighted for their effects on tissue differentiation. The present study investigated the effects of long-term treatment of INS-1E cells with 1 µM resveratrol on glucose-stimulated insulin secretion, testing an extended glucose dose response. The data demonstrate that chronic exposure to low-dose resveratrol expands the range of the glucose dose response of INS-1E cells beyond 15 mM glucose. We also assessed whether such beneficial effects could be retained after resveratrol withdrawal from the culture medium. This was not the case as INS-1E cells deprived of resveratrol returned to the phenotype of naïve cells, i.e., exhibiting a plateau phase at 15 mM glucose. Of note, although resveratrol has antioxidant properties, it cannot substitute for ß-mercaptoethanol normally present in the medium of INS-1E cells as a reducing agent. In conclusion, the addition of resveratrol as a standard component of the culture medium of INS-1E cells improves glucose-stimulated insulin secretion.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Resveratrol/farmacologia , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Células Secretoras de Insulina/metabolismo , Mercaptoetanol/farmacologia , Fenótipo , Ratos
11.
Cell Physiol Biochem ; 51(2): 924-937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30466091

RESUMO

BACKGROUND/AIMS: Islet metabolic disorder and inflammation contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Irisin is a recently identified adipomyokine with protective effects on metabolic homeostasis and inflammation-suppressing effects in hepatic and vascular cells. The present study examined the effects of irisin on lipid metabolism and inflammation in ß cells under glucolipotoxic conditions. METHODS: Rat INS-1E ß cells and islets isolated from C57BL/6 mice were incubated in glucolipotoxic conditions with or without irisin. Intracellular lipid contents and lipogenic gene expression were determined by enzymatic colorimetric assays and real-time PCR, respectively. Inflammatory status was evidenced by Western blot analysis for the phosphorylation of nuclear factor-κB (NF-κB) p65 and real-time PCR analysis for the expression of pro-inflammatory genes. RESULTS: Irisin reversed glucolipotoxicity-induced intracellular non-esterified fatty acid (NEFA) and triglyceride accumulation, suppressed associated elevations in lipogenic gene expression, and phosphorylated acetyl-CoA-carboxylase (ACC) in INS-1E cells. These demonstrated effects were dependent on irisin-activated adenosine monophosphate-activated protein kinase (AMPK). Meanwhile, AMPK signaling mediated the protective effects of irisin on INS-1E cell insulin secretory ability and survival as well. Additionally, irisin inhibited phosphorylation of NF-κB p65 while decreasing the expression of pro-inflammatory genes in INS-1E cells under glucolipotoxic conditions. Moreover, irisin also improved insulin secretion, inhibited apoptosis, and restored ß-cell function-related gene expression in isolated mouse islets under glucolipotoxic conditions. CONCLUSION: Irisin attenuated excessive lipogenesis in INS-1E cells under glucolipotoxic state through activation of AMPK. Irisin also suppressed overnutrition-induced inflammation in INS-1E cells. Our findings implicate irisin as a promising therapeutic target for the treatment of islet lipid metabolic disorder and islet inflammation in T2DM.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Fibronectinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Glucose/farmacologia , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo , Triglicerídeos/metabolismo
12.
Cell Rep ; 23(7): 2056-2069, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768204

RESUMO

BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Secreção de Insulina , Lipossomos , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
13.
DNA Cell Biol ; 37(3): 160-167, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29485914

RESUMO

Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.


Assuntos
Autofagia/efeitos dos fármacos , Insulina/metabolismo , Estreptozocina/toxicidade , Adenilato Quinase/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/metabolismo , Endorribonucleases/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Insulina/genética , Insulinoma , Complexos Multienzimáticos/metabolismo , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Ratos
14.
FEBS Lett ; 592(6): 999-1009, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29380352

RESUMO

ATPase Inhibitory factor 1 (IF1) is an endogenous regulator of mitochondrial ATP synthase, which is involved in cellular metabolism. Although great progress has been made, biological roles of IF1 and molecular mechanisms of its action are still to be elucidated. Here, we show that IF1 is present in pancreatic ß-cells, bound to the ATP synthase also under normal physiological conditions. IF1 silencing in model pancreatic ß-cells (INS-1E) increases insulin secretion over a range of glucose concentrations. The left-shifted dose-response curve reveals excessive insulin secretion even under low glucose, corresponding to fasting conditions. A parallel increase in cellular respiration and ATP levels is observed. To conclude, our results indicate that IF1 is a negative regulator of insulin secretion involved in pancreatic ß-cell glucose sensing.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Consumo de Oxigênio/fisiologia , Proteínas/metabolismo , Animais , Linhagem Celular Tumoral , Células Secretoras de Insulina/citologia , Ratos , Ratos Wistar , Proteína Inibidora de ATPase
15.
Nutrients ; 10(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373526

RESUMO

Isosteviol (ISV), a diterpene molecule, is an isomer of the backbone structure of a group of substances with proven antidiabetic capabilities. The aim of this study was to investigate if ISV elicits dynamic insulin release from pancreatic islets and concomitantly is able to ameliorate gluco-, lipo-, and aminoacidotoxicity in clonal ß-cell line (INS-1E) in relation to cell viability and insulin secretion. Isolated mice islets placed into perifusion chambers were perifused with 3.3 mM and 16.7 mM glucose with/without 10-7 M ISV. INS-1E cells were incubated for 72 h with either 30 mM glucose, 1 mM palmitate or 10 mM leucine with or without 10-7 M ISV. Cell viability was evaluated with a Cytotoxic Fluoro-test and insulin secretion was measured in Krebs-Ringer Buffer at 3.3 mM and 16.7 mM glucose. In the presence of 3.3 mM glucose, 10-7 M ISV did not change basal insulin secretion from perifused islets. However, at a high glucose level of 16.7 mM, 10-7 M ISV elicited a 2.5-fold increase (-ISV: 109.92 ± 18.64 ng/mL vs. +ISV: 280.15 ± 34.97 ng/mL; p < 0.01). After 72 h gluco-, lipo-, or aminoacidotoxicity in INS-1E cells, ISV treatment did not significantly affect cell viability (glucotoxicity, -ISV: 19.23 ± 0.83%, +ISV: 18.41 ± 0.90%; lipotoxicity, -ISV: 70.46 ± 3.15%, +ISV: 65.38 ± 2.81%; aminoacidotoxicity: -ISV: 8.12 ± 0.63%; +ISV: 7.75 ± 0.38%, all nonsignificant). ISV did not improve impaired insulin secretion (glucotoxicity, -ISV: 52.22 ± 2.90 ng/mL, +ISV: 47.24 ± 3.61 ng/mL; lipotoxicity, -ISV: 19.94 ± 4.10 ng/mL, +ISV: 22.12 ± 3.94 ng/mL; aminoacidotoxicity: -ISV: 32.13 ± 1.00 ng/mL; +ISV: 30.61 ± 1.54 ng/mL, all nonsignificant). In conclusion, ISV acutely stimulates insulin secretion at high but not at low glucose concentrations. However, ISV did not counteract cell viability or cell dysfunction during gluco-, lipo-, or aminoacidotoxicity in INS-1E cells.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Animais , Carbacol/efeitos adversos , Carbacol/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Agonistas Colinérgicos/efeitos adversos , Agonistas Colinérgicos/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diterpenos do Tipo Caurano/efeitos adversos , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/efeitos adversos , Glucose/metabolismo , Hipoglicemiantes/efeitos adversos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Leucina/efeitos adversos , Leucina/metabolismo , Camundongos , Concentração Osmolar , Ácido Palmítico/efeitos adversos , Ácido Palmítico/metabolismo , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/farmacologia , Técnicas de Cultura de Tecidos
16.
Cell Physiol Biochem ; 43(3): 1037-1051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968600

RESUMO

BACKGROUND/AIMS: Glucose-stimulated insulin secretion (GSIS) of pancreatic ß-cells involves glucose uptake and metabolism, closure of KATP channels and depolarization of the cell membrane potential (Vmem), activation of voltage-activated Ca2+ currents (ICav) and influx of Ca2+, which eventually triggers hormone exocytosis. Beside this classical pathway, KATP-independent mechanisms such as changes in intracellular pH (pHi) or cell volume, which also affect ß-cell viability, can elicit or modify insulin release. In ß-cells the regulation of pHi is mainly accomplished by Na+/H+ exchangers (NHEs). To investigate if other proton extrusion mechanisms than NHEs are involved in pH regulation, we tested for the presence of the non-gastric H+/K+ ATPase in rat insulinoma cells and assessed effects of the H+/K+ ATPase inhibitor SCH-28080 on insulin secretion, cell viability and apoptosis. METHODS: In INS-1E cell cultures, H+/K+ ATPase gene and protein expression was analyzed by reverse transcription PCR and Western blotting. Intracellular pH (pHi) recovery after acute acidic load was measured by NH4Cl prepulsing using BCECF. Insulin secretion was determined by ELISA from the cell culture supernatant. Vmem, K+ and Ca2+ currents were recorded using patch clamp. Overall cell responses were determined using resazurin (viability) and cytotoxicity assays. The mean cell volume (MCV), cell granularity (side-scatter; SSC), phosphatidylserine (PS) exposure, cell membrane integrity, caspase activity and the mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. RESULTS: We found that the α-subunit of the non-gastric H+/K+ ATPase (HKα2) is expressed on mRNA and protein level. However, compared to rat colon tissue, in INS-1E cells mRNA abundance was very low. In NH4Cl prepulsing experiments no K+-dependent pHi recovery was observed under Na+-free extracellular conditions. Nonetheless within 1 h, 20 µM SCH-28080 inhibited GSIS by ∼50%, while basal release was unaffected. The L-type ICav blocker nifedipine caused a full inhibition of GSIS at 10 and 20 µM. At 20 µM, SCH-28080 inhibited ICav comparable to 20 µM nifedipine and in addition augmented IKATP recorded at -60 mV and hyperpolarized Vmem by ∼15 mV. Cell viability 2 and 24 h post treatment with SCH-28080 was dose-dependently inhibited with IC50 values of 22.9 µM and 15.3 µM, respectively. At 20 µM the percentages of Annexin-V+, caspase+ and propidium iodide+ cells were significantly increased after 24 and 48 h. Concurrently, the MCV was significantly decreased (apoptotic volume decrease, AVD) and the SSC signal was increased. At concentrations >40-50 µM, SCH-28080 became progressively cytotoxic causing a steep increase in necrotic cells already 2 h post treatment and a breakdown of ΔΨm within 4 h under 50 and 100 µM while 10 and 20 µM had no effect on ΔΨm within 24 h. CONCLUSION: We demonstrate expression of HKα2 in rat INS-1E cells. However, the pump is apparently non-functional under the given conditions. Nonetheless the H+/K+ ATPase blocker SCH-28080 inhibits insulin secretion and induces cell death. Importantly, we show that SCH-28080 inhibits ICav - and activates KATP channels identifying them as novel "off-targets" of the inhibitor, causing hyperpolarization of Vmem and inhibition of insulin secretion.


Assuntos
Apoptose/efeitos dos fármacos , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Imidazóis/toxicidade , Insulina/análise , Inibidores da Bomba de Prótons/toxicidade , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/metabolismo , Ensaio de Imunoadsorção Enzimática , Glucose/farmacologia , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Secreção de Insulina , Insulinoma/metabolismo , Insulinoma/patologia , Canais KATP/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Nifedipino/toxicidade , Técnicas de Patch-Clamp , Fosfatidilserinas/farmacologia , RNA Mensageiro/metabolismo , Ratos
17.
ACS Appl Mater Interfaces ; 9(2): 1189-1206, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28045486

RESUMO

Both pancreatic ß-cell membranes and presynaptic active zones of neurons include in their structures similar protein complexes, which are responsible for mediating the secretion of bioactive molecules. In addition, these membrane-anchored proteins regulate interactions between neurons and guide the formation and maturation of synapses. These proteins include the neuroligins (e.g., NL-2) and their binding partners, the neurexins. The insulin secretion and maturation of ß-cells is known to depend on their 3-dimensional (3D) arrangement. It was also reported that both insulin secretion and the proliferation rates of ß-cells increase when cells are cocultured with clusters of NL-2. Use of full-length NL-2 or even its exocellular domain as potential ß-cell functional enhancers is limited by the biostability and bioavailability issues common to all protein-based therapeutics. Thus, based on molecular modeling approaches, a short peptide with the potential ability to bind neurexins was derived from the NL-2 sequence. Here, we show that the NL-2-derived peptide conjugates onto innovative functional maghemite (γ-Fe2O3)-based nanoscale composite particles enhance ß-cell functions in terms of glucose-stimulated insulin secretion and protect them under stress conditions. Recruiting the ß-cells' "neuron-like" secretory machinery as a target for diabetes treatment use has never been reported before. Such nanoscale composites might therefore provide a unique starting point for designing a novel class of antidiabetic therapeutic agents that possess a unique mechanism of action.


Assuntos
Nanopartículas , Animais , Moléculas de Adesão Celular Neuronais , Compostos Férricos , Hipoglicemiantes , Insulina , Camundongos , Proteínas do Tecido Nervoso
18.
Int J Biol Sci ; 11(11): 1272-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26435693

RESUMO

The role of AMP-activated protein kinase (AMPK) in pancreatic ß-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in ß-cell apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Metformina/farmacologia , Palmitatos/farmacologia , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos
19.
J Biol Chem ; 290(7): 4086-96, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548283

RESUMO

In pancreatic ß-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca(2+) influx, which triggers insulin exocytosis. The mitochondrial Ca(2+) uniporter (MCU) mediates Ca(2+) uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal ß-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca(2+) rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca(2+). Suppression of the putative Ca(2+)/H(+) antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca(2+)-induced matrix acidification. These results demonstrate that MCU-mediated Ca(2+) uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Canais de Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Proliferação de Células , Células Cultivadas , Metabolismo Energético , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Imunoenzimáticas , Secreção de Insulina , Células Secretoras de Insulina/citologia , Insulinoma/genética , Insulinoma/patologia , Masculino , Potencial da Membrana Mitocondrial , Fosforilação Oxidativa , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Br J Pharmacol ; 171(13): 3246-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24588674

RESUMO

BACKGROUND AND PURPOSE: Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH: Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS: Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS: Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine.


Assuntos
Berberina/farmacologia , Insulinoma/patologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Iridoides/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Microscopia Confocal , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...