Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
J Agric Food Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365899

RESUMO

The aim of the study was to evaluate the degree of acetylcholinesterase (AChE) inhibition by green and light- and dark-roasted coffee extracts and their fractions after digestion in a simulated gastrointestinal tract. The analysis was carried out using isothermal titration calorimetry, molecular docking, and dynamics simulations. The results showed that 3-O-caffeoylquinic acid binds strongly to AChE through hydrogen interactions with the amino acids ARG289A, HIS440A, and PHE288A and hydrophobic interactions with TYR121A in the active site of the enzyme. The Robusta green coffee extract (ΔG = -35.87 kJ/mol) and dichlorogenic acid fraction (ΔG = -19-29 kJ/mol) showed the highest affinity. Dichlorogenic acids (3,4-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, and 3,4-O-dicaffeoylquinic acid) have high affinity for AChE as single compounds (ΔG(ITC) = -48.99-55.36 kJ/mol, ΔG(LF/AD) = -43.38-45.38 kJ/mol). The concentration necessary to reduce AChE activity by 50% amounted to 0.22 µmol/µmol chlorogenic acids to the enzyme.

2.
Biomolecules ; 14(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39334875

RESUMO

Cell surface signaling (CSS) is a means of rapidly adjusting transcription in response to extracellular stimuli in Gram-negative bacteria. The pseudobactin BN7/8 uptake (Pup) system not only imports iron but also upregulates its own transcription through CSS in Pseudomonas capeferrum. In the absence of ferric pseudobactin BN7/8, the signaling components are maintained in a resting state via the formation of a periplasmic complex between the N-terminal signaling domain (NTSD) of the outer membrane iron-transporter, PupB, and the C-terminal CSS domain (CCSSD) of the sigma regulator, PupR. The previously determined 1.6 Å crystal structure of this periplasmic complex has allowed us to probe the structural and thermodynamic consequences of mutating key interfacial residues. In this report, we describe the solution structure of the PupB NTSD and use Nuclear Magnetic Resonance spectroscopy, Isothermal Titration Calorimetry, and Circular Dichroism spectroscopy together with thermal denaturation to investigate whether three PupB point mutations, Q69K, H72D, and L74A, influence the interaction merely due to the chemical nature of the amino acid substitution or also cause changes in overall protein structure. Our results demonstrate that binding to the PupR CCSSD does not alter the structure of PupB NTSD and that the individual mutations have only minor effects on structure. The mutations generally lower thermodynamic stability of the NTSD and weaken binding to the CCSSD. These findings validate the X-ray crystal structure interface, emphasizing the importance of amino acid chemical nature at the interface.


Assuntos
Proteínas de Bactérias , Pseudomonas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Pseudomonas/metabolismo , Pseudomonas/genética , Domínios Proteicos , Transdução de Sinais , Termodinâmica , Modelos Moleculares
3.
Int J Biol Macromol ; 278(Pt 4): 135044, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182888

RESUMO

Ferritin is a 24-mer protein nanocage that stores iron and regulates intracellular iron homeostasis. The nuclear receptor coactivator-4 (NCOA4) binds specifically to ferritin H subunits and facilitates the autophagic trafficking of ferritin to the lysosome for degradation and iron release. Using isothermal titration calorimetry (ITC), we studied the thermodynamics of the interactions between ferritin and the soluble fragment of NCOA4 (residues 383-522), focusing on the effects of the recently identified FeS cluster bound to NCOA4, ferritin subunit composition, and ferritin-iron loading. Our findings show that in the presence of the FeS cluster, the binding is driven by a more favorable enthalpy change and a decrease in entropy change, indicating a key role for the FeS cluster in the structural organization and stability of the complex. The ferritin iron core further enhances this association, increasing binding enthalpy and stabilizing the NCOA4-ferritin complex. The ferritin subunit composition primarily affects binding stoichiometry of the reaction based on the number of H subunits in the ferritin H/L oligomer. Our results demonstrate that both the FeS cluster and the ferritin iron core significantly affect the binding thermodynamics of the NCOA4-ferritin interactions, suggesting regulatory roles for the FeS cluster and ferritin iron content in ferritinophagy.


Assuntos
Calorimetria , Ferritinas , Ferro , Coativadores de Receptor Nuclear , Ligação Proteica , Termodinâmica , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/química , Ferro/metabolismo , Ferro/química , Ferritinas/química , Ferritinas/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química
4.
Methods Enzymol ; 702: 75-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155121

RESUMO

NIS Synthetases are a widely distributed, novel superfamily of enzymes critical to stealth siderophore production-small molecules increasingly associated with virulence. Study of these enzymes for inhibition or utilization in biosynthesis of new antibiotics has been hindered by multiple kinetics assays utilizing different limiting reporters or relying on product dissociation as a precursor to signal. We present a label free, continuous readout assay optimized for NIS Synthetase systems utilizing an isothermal titration calorimetry instrument. This assay has been tested in an iterative system comparing multiple turnovers on a single substrate to a single bond formation event and is able to delineate these complex kinetics well. The ITC-based kinetic assay is the first label-free assay for the NIS field, which may allow for more detailed kinetic comparisons in the future, and may also have broader use for iterative enzymes in general.


Assuntos
Calorimetria , Ensaios Enzimáticos , Peptídeo Sintases , Cinética , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/instrumentação , Calorimetria/métodos , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sideróforos/metabolismo , Sideróforos/química , Especificidade por Substrato
5.
J Biol Chem ; 300(7): 107427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823641

RESUMO

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with Na+, Li+, or H+ but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt and the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelBSt, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na+-binding residues for the selection of Na+ and H+ by free energy simulations. Transport assays showed that the D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelBSt.


Assuntos
Sódio , Simportadores , Simportadores/química , Simportadores/metabolismo , Simportadores/genética , Sítios de Ligação , Cristalografia por Raios X , Sódio/metabolismo , Sódio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/química , Melibiose/metabolismo , Melibiose/química , Cátions/metabolismo , Cátions/química , Conformação Proteica
6.
Chembiochem ; : e202400391, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877657

RESUMO

Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 µM for mono- to 1 µM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.

7.
FEBS Lett ; 598(18): 2249-2258, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38853439

RESUMO

Lys48-linked ubiquitin chains, regulating proteasomal protein degradation, are known to include cyclized forms. This cyclization hinders recognition by many downstream proteins by occluding the Ile44-centered patch. In contrast, the A20-like Znf domain of ZNF216 (a ubiquitin-binding protein, A20 Znf) is expected to bind to cyclic ubiquitin chains via constitutively solvent-exposed surfaces. However, the underlying interaction mechanism remains unclear. Here, our ITC and NMR experiments collectively showed that cyclization did not interfere with and even slightly enhance the molecular recognition of diubiquitin by A20 Znf. This effect is explained by the cyclization-induced repression of conformational dynamics in diubiquitin and an enlarged molecular interface in the complex. Thus, these results suggest that cyclic ubiquitin chains can be involved in regulation of ZNF216-dependent proteasomal protein degradation.


Assuntos
Proteínas de Ligação a DNA , Ligação Proteica , Ubiquitina , Humanos , Ciclização , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina/química
8.
Breast Cancer ; 31(5): 769-786, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38802681

RESUMO

INTRODUCTION: The axillary lymph node status (ALNS) and internal mammary lymph nodes (IMLN) expression associated with breast cancer are closely linked to prognosis. This study aimed to establish a nomogram to predict survival at 3, 5, and 10 years in patients with various lymph node statuses. METHODS: We obtained data from patients with breast cancer between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER database). Chi-square analysis was performed to test for differences in the pathological characteristics of the groups, and Kaplan-Meier analysis and the log-rank test were used to plot and compare the correlation between overall survival (OS) and breast cancer specific survival (BCSS). The log-rank test was used for the univariate analysis, and statistically significant characteristics were included in the multivariate and Cox regression analyses. Finally, Independent factor identification was included in constructing the nomogram using R studio 4.2.0; area under curve (AUC) values were calculated, and receiver operating characteristic (ROC) curve, calibration, and decision curve analysis (DCA) curves were plotted for evaluation. RESULTS: A total of 279,078 patients were enrolled and analysed, demonstrating that the isolated tumour cells (ITC) group had clinicopathological characteristics similar to those of micrometastases (Mic). Multivariate analysis was performed to identify each subgroup's independent risk factors and construct a nomogram. The AUC values were 74.7 (95% CI 73.6-75.8), 72.8 (95% CI 71.9-73.8), and 71.2 (95% CI 70.2-72.2) for 3-, 5-, and 10-year OS, respectively, and 82.2 (95% CI 80.9-83.6), 80.1 (95% CI 79.0-81.2), and 75.5 (95% CI 74.3-76.8) for BCSS in overall breast cancer cases, respectively. AUC values for 3-, 5-, and 10-year OS in the ITC group were 64.8 (95% CI 56.5-73.2), 67.7 (95% CI 62.0-73.4), and 65.4 (95% CI 60.0-70.7), respectively. For those in the Mic group, AUC values for 3-, 5-, and 10-year OS were 72.9 (95% CI 70.7-75.1), 72.4 (95% CI 70.6-74.1), and 71.3 (95% CI 69.6-73.1), respectively, and AUC values for BCSS were 77.8 (95% CI 74.9-80.7), 75.7 (95% CI 73.5-77.9), and 70.3 (95% CI 68.0-72.6), respectively. In the IMLN group, AUC values for 3-, 5-, and 10-year OS were 75.2 (95% CI 71.7-78.7), 73.4 (95% CI 70.0-76.8), and 74.0 (95% CI 69.6-78.5), respectively, and AUC values for BCSS were 76.6 (95% CI 73.0-80.3), 74.1 (95% CI 70.5-77.7), and 74.7 (95% CI 69.8-79.5), respectively. The ROC, calibration, and DCA curves verified that the nomogram had better predictability and benefits. CONCLUSION: This study is the first to investigate the predictive value of different axillary lymph node statuses and internal mammary lymph node metastases in breast cancer, providing clinicians with additional aid in treatment decisions.


Assuntos
Neoplasias da Mama , Linfonodos , Metástase Linfática , Nomogramas , Programa de SEER , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Feminino , Pessoa de Meia-Idade , Linfonodos/patologia , Metástase Linfática/patologia , Adulto , Idoso , Curva ROC , Estimativa de Kaplan-Meier , Prognóstico , Axila , Análise de Sobrevida
9.
Eur J Med Chem ; 273: 116505, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788300

RESUMO

Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90 , Imidazóis , Resorcinóis , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Resorcinóis/química , Resorcinóis/farmacologia , Resorcinóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
10.
Food Chem ; 453: 139617, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788642

RESUMO

The copigmentation effect between malvidin-3-O-glucoside and caffeic acid was comprehensive inquiry on the model wine solution, theoretical simulation and real wine. Thermodynamic parameters were determined by UV/Visible spectroscopy and Isothermal titration calorimetry (ITC). Theoretical data were obtained employing a dispersion-corrected density functional approach. The effects in real wines were investigated by adding the caffeic acid during different fermentation periods. Results shown that the copigmentation reaction between caffeic acid and malvidin-3-O-glucoside is a spontaneous exothermic reaction driven by hydrogen bonding and dispersions forces. Computations show that the polyhydroxyl sugar moiety and phenolic hydroxyl groups are the key active sites. The addition of caffeic acid in post-alcohol fermentation samples evidences an improving color characteristics in the wine.


Assuntos
Antocianinas , Ácidos Cafeicos , Cor , Glucosídeos , Termodinâmica , Vinho , Ácidos Cafeicos/química , Vinho/análise , Glucosídeos/química , Antocianinas/química , Ligação de Hidrogênio , Estrutura Molecular , Fermentação
11.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791275

RESUMO

A comprehensive thermodynamic and structural study of the complexation affinities of tetra (L1), penta (L2), and hexaphenylalanine (L3) linear peptides towards several inorganic anions in acetonitrile (MeCN) and N,N-dimethylformamide (DMF) was carried out. The influence of the chain length on the complexation thermodynamics and structural changes upon anion binding are particularly addressed here. The complexation processes were characterized by means of spectrofluorimetric, 1H NMR, microcalorimetric, and circular dichroism spectroscopy titrations. The results indicate that all three peptides formed complexes of 1:1 stoichiometry with chloride, bromide, hydrogen sulfate, dihydrogen phosphate (DHP), and nitrate anions in acetonitrile and DMF. In the case of hydrogen sulfate and DHP, anion complexes of higher stoichiometries were observed as well, namely those with 1:2 and 2:1 (peptide:anion) complexes. Anion-induced peptide backbone structural changes were studied by molecular dynamic simulations. The anions interacted with backbone amide protons and one of the N-terminal amine protons through hydrogen bonding. Due to the anion binding, the main chain of the studied peptides changed its conformation from elongated to quasi-cyclic in all 1:1 complexes. The accomplishment of such a conformation is especially important for cyclopeptide synthesis in the head-to-tail macrocyclization step, since it is most suitable for ring closure. In addition, the studied peptides can act as versatile ionophores, facilitating transmembrane anion transport.


Assuntos
Ânions , Termodinâmica , Ânions/química , Peptídeos/química , Peptídeos/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Acetonitrilas/química , Dimetilformamida/química , Dicroísmo Circular
12.
Expert Opin Drug Discov ; 19(6): 649-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715415

RESUMO

INTRODUCTION: Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED: In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION: The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Proteínas , Ligantes , Proteínas/metabolismo , Humanos , Descoberta de Drogas/métodos , Desenho de Fármacos/métodos , Ligação Proteica , Ensaios de Triagem em Larga Escala/métodos
13.
Arch Biochem Biophys ; 756: 109995, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38621448

RESUMO

T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.


Assuntos
Calorimetria , Polinucleotídeo 5'-Hidroxiquinase , Cinética , Calorimetria/métodos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Termodinâmica , Bacteriófago T4/enzimologia , Difosfatos/química , Difosfatos/metabolismo , Fosforilação
14.
Structure ; 32(7): 878-888.e4, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38582076

RESUMO

The translation factor IF5A is highly conserved in Eukarya and Archaea and undergoes a unique post-translational hypusine modification by the deoxyhypusine synthase (DHS) enzyme. DHS transfers the butylamine moiety from spermidine to IF5A using NAD as a cofactor, forming a deoxyhypusine intermediate. IF5A is a key player in protein synthesis, preventing ribosome stalling in proline-rich sequences during translation elongation and facilitating translation elongation and termination. Additionally, human eIF5A participates in various essential cellular processes and contributes to cancer metastasis, with inhibiting hypusination showing anti-proliferative effects. The hypusination pathway of IF5A is therefore an attractive new therapeutic target. We elucidated the 2.0 Å X-ray crystal structure of the archaeal DHS-IF5A complex, revealing hetero-octameric architecture and providing a detailed view of the complex active site including the hypusination loop. This structure, along with biophysical data and molecular dynamics simulations, provides new insights into the catalytic mechanism of the hypusination reaction.


Assuntos
Domínio Catalítico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Fator de Iniciação de Tradução Eucariótico 5A , Lisina/química , Lisina/metabolismo , Lisina/análogos & derivados , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica
15.
Chembiochem ; 25(14): e202400116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668388

RESUMO

The 4-aminoquinoline class of compounds includes the important antimalarial compounds amodiaquine and chloroquine. Despite their medicinal importance, the mode of action of these compounds is poorly understood. In a previous study we observed these compounds, as well as quinine and mefloquine, tightly bind the DNA cocaine-binding aptamer. Here, we further explore the range of nucleic acid structures bound by these compounds. To gauge a wide range of binding affinities, we used isothermal titration calorimetry to explore high affinity binding (nM to tens of µM) and NMR spectroscopy to assay weak binding biding in the hundreds of micromolar range. We find that amodiaquine tightly binds all double stranded DNA structures explored. Mefloquine binds double stranded DNA duplex molecules tightly and weakly associates with a three-way junction DNA construct. Quinine and chloroquine only weakly bind duplex DNA but do not tightly bind any of the DNA constructs explored. A simulation of the free energy of binding of these ligands to the Dickerson-Drew dodecamer resulted in an excellent agreement between the simulated and experimental free energy. These results provide new insight into the DNA binding of clinically important antimalarial compounds and may play a role in future development of new antimalarials.


Assuntos
Amodiaquina , DNA , DNA/química , DNA/metabolismo , Amodiaquina/química , Amodiaquina/metabolismo , Amodiaquina/análogos & derivados , Antimaláricos/química , Antimaláricos/metabolismo , Conformação de Ácido Nucleico , Sítios de Ligação , Termodinâmica , Calorimetria
16.
J Mark Access Health Policy ; 12(2): 58-80, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660413

RESUMO

INTRODUCTION: Health technology assessment (HTA) agencies express a clear preference for randomized controlled trials when assessing the comparative efficacy of two or more treatments. However, an indirect treatment comparison (ITC) is often necessary where a direct comparison is unavailable or, in some cases, not possible. Numerous ITC techniques are described in the literature. A systematic literature review (SLR) was conducted to identify all the relevant literature on existing ITC techniques, provide a comprehensive description of each technique and evaluate their strengths and limitations from an HTA perspective in order to develop guidance on the most appropriate method to use in different scenarios. METHODS: Electronic database searches of Embase and PubMed, as well as grey literature searches, were conducted on 15 November 2021. Eligible articles were peer-reviewed papers that specifically described the methods used for different ITC techniques and were written in English. The review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: A total of 73 articles were included in the SLR, reporting on seven different ITC techniques. All reported techniques were forms of adjusted ITC. Network meta-analysis (NMA) was the most frequently described technique (in 79.5% of the included articles), followed by matching-adjusted indirect comparison (MAIC) (30.1%), network meta-regression (24.7%), the Bucher method (23.3%), simulated treatment comparison (STC) (21.9%), propensity score matching (4.1%) and inverse probability of treatment weighting (4.1%). The appropriate choice of ITC technique is critical and should be based on the feasibility of a connected network, the evidence of heterogeneity between and within studies, the overall number of relevant studies and the availability of individual patient-level data (IPD). MAIC and STC were found to be common techniques in the case of single-arm studies, which are increasingly being conducted in oncology and rare diseases, whilst the Bucher method and NMA provide suitable options where no IPD is available. CONCLUSION: ITCs can provide alternative evidence where direct comparative evidence may be missing. ITCs are currently considered by HTA agencies on a case-by-case basis; however, their acceptability remains low. Clearer international consensus and guidance on the methods to use for different ITC techniques is needed to improve the quality of ITCs submitted to HTA agencies. ITC techniques continue to evolve quickly, and more efficient techniques may become available in the future.

17.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612514

RESUMO

Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aß42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aß42 is detectable in the plasma, a phenomenon thought to result from Aß becoming more aggregated in the brain and less Aß42 and Aß40 being transported from the brain to the plasma via the CSF. We propose that extracellular vesicles (EVs) play a role in this transport. EVs are found in bodily fluids such as blood, urine, and cerebrospinal fluid and carry diverse "cargos" of bioactive molecules (e.g., proteins, nucleic acids, lipids, metabolites) that dynamically reflect changes in the cells from which they are secreted. While Aß42 and Aß40 have been reported to be present in EVs, it is not known whether this interaction is specific for these peptides and thus whether amyloid-carrying EVs play a role in AD and/or serve as brain-specific biomarkers of the AD process. To determine if there is a specific interaction between Aß and EVs, we used isothermal titration calorimetry (ITC) and discovered that Aß42 and Aß40 bind to EVs in a manner that is sequence specific, saturable, and endothermic. In addition, Aß incubation with EVs overnight yielded larger amounts of bound Aß peptide that was fibrillar in structure. These findings point to a specific amyloid-EV interaction, a potential role for EVs in the transport of amyloid from the brain to the blood, and a role for this amyloid pool in the AD process.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Adulto , Humanos , Peptídeos , Proteínas Amiloidogênicas , Plasma
18.
Front Chem ; 12: 1381032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638878

RESUMO

ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn2+ cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn2+ cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.

19.
Anal Sci ; 40(5): 943-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609708

RESUMO

A biotinyl cyclic naphthalene diimide (biotinyl cNDI) (1), in which biotin is introduced on the cyclic linker chain of cNDI with high G-quadruplex (G4) specificity, was synthesized. 1 was used for binding analysis to G4 DNAs such as c-myc, c-kit, CEGF, or TA-core. The results showed that 1 bind to G4 DNAs with high affinity and, especially, two molecules of 1 bind to c-myc DNA from top and bottom of G4 site at K = 3.9 × 10-6 M-1 without changing the G4 structure. As a pulldown assay, 1 and streptavidin magnetic beads could be used to recover a c-myc DNA or 120-mer DNA fragment having single c-myc sequence. The qPCR results for the 120-meric DNAs showed that more than 50% of genomic DNA fragments could be recovered by this pulldown assay. The results obtained here might allow the recovery of G4-containing DNA fragments from genomic DNA to analyze the true G4 present in the genome.

20.
J Magn Reson ; 362: 107689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677224

RESUMO

ß-Lactamases (EC 3.5.2.6) confer resistance against ß-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against ß-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative ß-lactamase activity, sulbactam binding (a ß-lactam analogue) in the low µM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known ß-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its ß-lactamase activity. Current study is the first report on ß-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for ß-lactamase activity.


Assuntos
Chlamydomonas reinhardtii , beta-Lactamases , Chlamydomonas reinhardtii/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Sítios de Ligação , Ressonância Magnética Nuclear Biomolecular/métodos , Sulbactam/química , Sulbactam/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...