Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2786: 147-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814393

RESUMO

Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.


Assuntos
RNA Mensageiro , Transcrição Gênica , RNA Mensageiro/genética , Humanos , Transfecção/métodos , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , DNA/genética , Animais
2.
Methods Enzymol ; 695: 103-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521582

RESUMO

A large variety of non-B secondary structures can be formed between DNA and RNA. In this chapter, we focus on G-quadruplexes (G4) and R-loops, which can have a close structural interplay. In recent years, increasing evidence pointed to the fact that they can strongly influence each other in vivo, both having physiological and pathological roles in normal and cancer cells. Here, we detail specific and accurate methods for purification of BG4 and S9.6 antibodies, and their subsequent use in immunofluorescence microscopy, enabling single-cell analysis of extent and localization of G4s and R-loops.


Assuntos
Quadruplex G , Estruturas R-Loop , DNA/química , RNA/química , Microscopia de Fluorescência
3.
BMC Vet Res ; 20(1): 45, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310245

RESUMO

The red-eared slider (Trachemys scripta elegans) is renowned for its remarkable adaptations, yet much of its complex biology remains unknown. In this pioneering study, we utilized a combination of gross anatomy, scanning electron microscopy (SEM), light microscopy, and immunofluorescence techniques to examine the tongue's omnivorous adaptation in this species. This research bridges a critical knowledge gap, enhancing our understanding of this intriguing reptile. Gross examination revealed a unique arrowhead-shaped tongue with a median lingual fissure and puzzle-piece-shaped tongue papillae. SEM unveiled rectangular filiform, conical, and fungiform papillae, with taste pores predominantly on the dorsal surface and mucous cells on the lateral surface of the papillae. Histologically, the tongue's apex featured short rectangular filiform and fungiform papillae, while the body exhibited varying filiform shapes and multiple taste buds on fungiform papillae. The tongue's root contained lymphatic tissue with numerous lymphocytes surrounding the central crypt, alongside lingual skeletal musculature, blood and lymph vessels, and Raffin corpuscles in the submucosa. The lingual striated muscle bundles had different orientations, and the lingual hyaline cartilage displayed a bluish coloration of the ground substance, along with a characteristic isogenous group of chondrocytes. Our research represents the first comprehensive application of immunofluorescence techniques to investigate the cellular intricacies of the red-eared slider's tongue by employing seven distinct antibodies, revealing a wide array of compelling and significant findings. Vimentin revealed the presence of taste bud cells, while synaptophysin provided insights into taste bud and nerve bundle characteristics. CD34 and PDGFRα illuminated lingual stromal cells, and SOX9 and PDGFRα shed light on chondrocytes within the tongue's cartilage. CD20 mapped B-cell lymphocyte distribution in the lingual tonsil, while alpha smooth actin (α-SMA) exposed the intricate myofibroblast and smooth muscle network surrounding the lingual blood vessels and salivary glands. In conclusion, our comprehensive study advances our knowledge of the red-eared slider's tongue anatomy and physiology, addressing a significant research gap. These findings not only contribute to the field of turtle biology but also deepen our appreciation for the species' remarkable adaptations in their specific ecological niches.


Assuntos
Tartarugas , Animais , Elétrons , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Língua , Microscopia Eletrônica de Varredura/veterinária
4.
Methods Mol Biol ; 2713: 117-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639118

RESUMO

Human immune system mice, also referred to as humanized mice, are a major research tool for the in vivo study of human immune system function. Upon reconstitution with human hematopoietic stem cells, all major human leukocyte populations develop in immunodeficient mice and can be detected in peripheral blood as well as in lymphatic and nonlymphatic tissue. This includes human macrophages that are intrinsically difficult to study from humans due to their organ-resident nature. In the following chapter, we provide a detailed protocol for generation of human immune system mice. We suggest that these mice are a suitable model to study human macrophage function in vivo.


Assuntos
Vasos Linfáticos , Macrófagos , Humanos , Animais , Camundongos , Leucócitos , Células-Tronco Hematopoéticas , Projetos de Pesquisa
5.
Methods Mol Biol ; 2713: 453-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639141

RESUMO

In addition to the canonical B-DNA conformation, DNA can fold into different secondary structures. Among them are G-quadruplex structures (G4s). G4 structures are very stable and can fold in specific guanine-rich regions in DNA and RNA. Different in silico, in vitro, and in cellulo experiments have shown that G4 structures form so far in all tested organisms. There are over 700,000 predicted G4s in higher eukaryotes, but it is so far assumed that not all will form at the same time. Their formation is dynamically regulated by proteins and is cell type-specific and even changes during the cell cycle or during different exogenous or endogenous stimuli (e.g., infection or developmental stages) can alter the G4 level. G4s have been shown to accumulate in cancer cells where they contribute to gene expression changes and the mutagenic burden of the tumor. Specific targeting of G4 structures to impact the expression of oncogenes is currently discussed as an anti-cancer treatment. In a tumor microenvironment, not only the tumor cells will be targeted by G4 stabilization but also immune cells such as macrophages. Although G4s were detected in multiple organisms and different cell types, only little is known about their role in immune cells. Here, we provide a detailed protocol to detect G4 formation in the nucleus of macrophages of vertebrates and invertebrates by microscopic imaging.


Assuntos
Quadruplex G , Animais , Macrófagos , Núcleo Celular , Ciclo Celular , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...