Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
Int Immunopharmacol ; 140: 112806, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098232

RESUMO

Dihydromyricetin (DMY), a natural flavonoid compound, are believed to prevent inflammatory response, dealing with pathogens and repairing the intestinal barrier. The objective of this study was to investigate whether DMY supplementation could attenuate intestinal damage in the context of enterotoxigenic Escherichia coli K88 (ETEC F4+) infection. After weaning, different litters of pigs were randomly assigned to one of the following treatments: (1) non-challenged control (CON, fed with basal diet); (2) ETEC-challenged control (ECON, fed with basal diet); and (3) ETEC challenge + DMY treatment (EDMY, fed with basal diet plus 300 mg kg-1 DMY). We observed a significant reduction in fecal Escherichia coli shedding and diarrhea incidence, but an increase in ADG in pigs of EDMY group compared to the pigs of ECON group. Relative to the pigs of ECON group, dietary DMY treatment decreased (P < 0.05) concentrations of the serum D-xylose, D-lactate and diamine oxidase (DAO), but increased the abundance of zonula occludens-1 (ZO-1) in the jejunum of pigs. In addition, DMY also decreased (P < 0.05) the number of S-phase cells and the percentage of total apoptotic epithelial cells of jejunal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Furthermore, DMY decreased the mRNA expression levels of critical immune-associated genes TLR4, NFκB, Caspase3, Caspase9, IL-1ß, IL-6, TNF-α and the protein p-NFκB and p-IκBα expressions of intestinal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Compared to the ECON group, DMY elevated (P < 0.05) the expression levels of ß-defensins PBD1, PBD2, PBD3, PBD129, as well as the abundance of secreted IgA in intestinal mucosae of the EDMY group. Thus, our results indicate that DMY may relieve intestinal integrity damage due to Escherichia coli F4.

2.
Front Pharmacol ; 15: 1380326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962312

RESUMO

Objective: This study compares the cardiovascular risk in anemic chronic kidney disease patients treated with Roxadustat versus erythropoietin stimulating agents (ESAs). It also explores the cardiovascular impact of Roxadustat. Methods: We searched PubMed, EMBASE, Cochrane, Scopus, and Web of Science databases up to 13 August 2023, using terms such as "ESA," "Roxadustat," "MACE," "stroke," "death," "myocardial infarction," and "heart failure." Two researchers independently selected and extracted data based on predefined criteria. We assessed the risk of bias with the Cochrane tool and analyzed statistical heterogeneity using the Q and I2 tests. We conducted subgroup analyses by geographical region and performed data analysis with Stata 14.0 and RevMan 5.4 software. Data were sourced from the NCBI database by filtering for "Roxadustat" and "human," and differentially expressed genes were identified using R software, setting the significance at p < 0.01 and a 2-fold logFC, followed by GO enrichment analysis, KEGG pathway analysis, and protein interaction network analysis. Results: A total of 15 articles encompassing 1,43,065 patients were analyzed, including 1,38,739 patients treated with ESA and 4,326 patients treated with Roxadustat. In the overall population meta-analysis, the incidences of Major Adverse Cardiovascular Events (MACE), death, and heart failure (HF) were 13%, 8%, and 4% in the Roxadustat group, compared to 17%, 12%, and 6% in the ESA group, respectively, with P-values greater than 0.05. In the subgroup analysis, the incidences were 13%, 11%, and 4% for the Roxadustat group versus 17%, 15%, and 5% for the ESA group, also with p-values greater than 0.05. Bioinformatics analysis identified 59 differentially expressed genes, mainly involved in the inflammatory response. GO enrichment analysis revealed that these genes are primarily related to integrin binding. The main pathways identified were the TNF signaling pathway, NF-κB signaling pathway, and lipid metabolism related to atherosclerosis. The protein interaction network highlighted IL1B, CXCL8, ICAM1, CCL2, and CCL5 as the top five significantly different genes, all involved in the inflammatory response and downregulated by Roxadustat, suggesting a potential role in reducing inflammation. Conclusion: The meta-analysis suggests that the use of Roxadustat and ESA in treating anemia associated with chronic kidney disease does not significantly alter the likelihood of cardiovascular events in the overall and American populations. However, Roxadustat exhibited a safer profile with respect to MACE, death, and heart failure. The bioinformatics findings suggest that Roxadustat may influence integrin adhesion and affect the TNF and NF-κB signaling pathways, along with lipid and atherosclerosis pathways, potentially reducing inflammation.

3.
Ren Fail ; 46(2): 2373276, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38967134

RESUMO

BACKGROUND: Podocytes, as intrinsic renal cells, can also express MHC-II and costimulatory molecules under inflammatory conditions, suggesting that they may act as antigen-presenting cells (APCs) to activate immune cell responses and then lead to immune-mediated renal injury. They are already recognized as main targets in the pathogenic mechanism of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN). Previous studies also have indicated that inflammatory cells infiltration and immune-mediated tissue injury are evident in the kidney samples of patients with HBV-GN. However, the role of podocytes immune disorder in the pathogenic mechanism of HBV-GN remains unclear. METHODS: Renal function and inflammatory cells infiltration were measured in HBV transgenic (HBV-Tg) mice. In vitro, podocytes/CD4+ T cells or macrophages co-culture system was established. Then, the expression of HBx, CD4, and CD68 was determined by immunohistochemistry, while the expression of MHC-II, CD40, and CD40L was determined by immunofluorescence. Co-stimulatory molecules expression was examined by flow cytometry. The levels of inflammatory factors were detected by ELISA. RESULTS: In vivo, renal function was obviously impaired in HBV-Tg mice. HBx was significantly upregulated and immune cells infiltrated in the glomerulus of HBV-Tg mice. Expression of MHC-II and costimulatory molecule CD40 increased in the podocytes of HBV-Tg mice; CD4+ T cells exhibited increased CD40L expression in glomerulus. In vitro, CD40 expression was markedly elevated in HBx-podocytes. In co-culture systems, HBx-podocytes stimulated CD4+ T cells activation and caused the imbalance between IFN-γ and IL-4. HBx-podocytes also enhanced the adhesion ability of macrophages and induced the release of proinflammatory mediators. CONCLUSION: Taken together, these podocyte-related immune disorder may be involved in the pathogenic mechanism of HBV-GN.


Assuntos
Glomerulonefrite , Vírus da Hepatite B , Camundongos Transgênicos , Podócitos , Transativadores , Proteínas Virais Reguladoras e Acessórias , Animais , Podócitos/imunologia , Podócitos/patologia , Podócitos/metabolismo , Camundongos , Transativadores/metabolismo , Transativadores/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/virologia , Vírus da Hepatite B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Hepatite B/imunologia , Hepatite B/complicações , Humanos , Técnicas de Cocultura , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Virulence ; 15(1): 2383559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066684

RESUMO

A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.


Assuntos
Infecções por Cardiovirus , Vírus da Encefalomiocardite , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Encefalomiocardite/patogenicidade , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/fisiologia , Animais , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/veterinária , Suínos , Humanos , Interações Hospedeiro-Patógeno/imunologia , Miocardite/virologia , Miocardite/imunologia , Virulência , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia
5.
Vaccines (Basel) ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39066374

RESUMO

The mRNA vaccine against COVID-19 protects against severe disease by the induction of robust humoral and cellular responses. Recent studies have shown the capacity of some vaccines to induce enduring non-specific innate immune responses by the induction of trained immunity, augmenting protection against unrelated pathogens. This study aimed to assess whether the mRNA vaccine BNT162b2 can induce lasting non-specific immune responses in myeloid cells following a three-dose vaccination scheme. In a sample size consisting of 20 healthy individuals from Romania, we assessed inflammatory proteins using the Olink® Target 96 Inflammation panel, as well as ex vivo cytokine responses following stimulations with unrelated PRR ligands. We assessed the vaccine-induced non-specific systemic inflammation and functional adaptations of myeloid cells. Our results revealed the induction of a stimulus- and cytokine-dependent innate immune memory phenotype that became apparent after the booster dose and was maintained eight months later in the absence of systemic inflammation.

6.
J Mol Neurosci ; 74(3): 72, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042258

RESUMO

Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.


Assuntos
Antioxidantes , Berberina , Ratos Wistar , Animais , Masculino , Ratos , Berberina/farmacologia , Berberina/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo
7.
Trends Pharmacol Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019763

RESUMO

Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.

8.
J Environ Sci (China) ; 145: 164-179, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844317

RESUMO

The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.


Assuntos
Microcistinas , Análise de Sequência de RNA , Microcistinas/toxicidade , Animais , Camundongos , Fígado/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Leucina , Hepatócitos/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas
9.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928108

RESUMO

Airborne fine particulate matter (PM2.5) in air pollution has become a significant global public health concern related to allergic diseases. Previous research indicates that PM2.5 not only affects the respiratory system but may also induce systemic inflammation in various tissues. Moreover, its impact may vary among different populations, with potential consequences during pregnancy and in newborns. However, the precise mechanisms through which PM2.5 induces inflammatory reactions remain unclear. This study aims to explore potential pathways of inflammatory responses induced by PM2.5 through animal models and zebrafish embryo experiments. In this study, zebrafish embryo experiments were conducted to analyze the effects of PM2.5 on embryo development and survival, and mouse experimental models were employed to assess the impact of PM2.5 stimulation on various aspects of mice. Wild-type zebrafish embryos were exposed to a PM2.5 environment of 25-400 µg/mL starting at 6 h after fertilization (6 hpf). At 6 days post-fertilization, the survival rates of the 25, 50, 100, and 200 µg/mL groups were 100%, 80, 40%, and 40%, respectively. Zebrafish embryos stimulated with 25 µg/mL of PM2.5 still exhibited successful development and hatching. Additionally, zebrafish subjected to doses of 25-200 µg/mL displayed abnormalities such as spinal curvature and internal swelling after hatching, indicating a significant impact of PM2.5 stimulation on embryo development. In the mouse model, mice exposed to PM2.5 exhibited apparent respiratory overreaction, infiltration of inflammatory cells into the lungs, elevated levels of inflammatory response-related cytokines, and inflammation in various organs, including the liver, lungs, and uterus. Blood tests on experimental mice revealed increased expression of inflammatory and chemotactic cytokines, and GSEA indicated the induction of various inflammatory responses and an upregulation of the TNF-α/NFκB pathway by PM2.5. Our results provide insights into the harmful effects of PM2.5 on embryos and organs. The induced inflammatory responses by PM2.5 may be mediated through the TNF-α/NFκB pathway, leading to systemic organ inflammation. However, whether PM2.5-induced inflammatory responses in various organs and abnormal embryo development are generated through different pathways requires further study to comprehensively clarify and identify potential treatment and prevention methods.


Assuntos
Desenvolvimento Embrionário , Material Particulado , Peixe-Zebra , Animais , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Peixe-Zebra/embriologia , Camundongos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Poluentes Atmosféricos/toxicidade , Citocinas/metabolismo
10.
Int Immunopharmacol ; 136: 112284, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823179

RESUMO

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.


Assuntos
Calcineurina , Catepsina B , Citocinas , Flavonoides , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/induzido quimicamente , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citocinas/metabolismo , Catepsina B/metabolismo , Camundongos , Masculino , Calcineurina/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Ceruletídeo , NF-kappa B/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Transdução de Sinais/efeitos dos fármacos , Arginina/metabolismo , Modelos Animais de Doenças , Proteínas Quinases Ativadas por AMP/metabolismo
11.
Heliyon ; 10(11): e31296, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828311

RESUMO

Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.

12.
J Food Sci ; 89(7): 4480-4492, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847765

RESUMO

Depression is a prevalent psychiatric disease with the characteristic of persistently gloomy mood. The treatment of depression with traditional therapeutic medications suffers from low efficacy and adverse side effects due to the extremely unpredictable courses and uneven responses to treatment. The goal of this paper was to investigate the preparation of selenium-enriched fermented goat milk and the potential mechanism of its intervention on the chronic unpredictable stress-induced depression mice model. The results showed that Se-Lactobacillus paracasei 20241 (Se-20241) significantly alleviated depressive behavior, reversed the upregulation of inflammatory factors, and attenuated glucocorticoid resistance. Meanwhile, the results showed a modulatory function on oxidative stress dysfunction in the liver, hippocampus, and prefrontal cortex. The change in abundance of Ileibacterium, Muribaculaceae, Turicibacter, Dubosiella, and Bifidobacterium was also modified. These results provided the theoretical groundwork for the development of psychoactive probiotic supplements for depressed patients and clarified the probable mechanism of Se-20241 for antidepressant impact on the CUMS model.


Assuntos
Depressão , Modelos Animais de Doenças , Cabras , Lacticaseibacillus paracasei , Leite , Probióticos , Selênio , Animais , Selênio/farmacologia , Depressão/terapia , Camundongos , Probióticos/farmacologia , Masculino , Lacticaseibacillus paracasei/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Produtos Fermentados do Leite/microbiologia , Fermentação , Antidepressivos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Estresse Psicológico , Comportamento Animal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
13.
Behav Brain Res ; 471: 115111, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38871130

RESUMO

The role of the gut-brain axis in mental health disorders has been extensively studied. As the oral cavity is the starting point of the digestive tract, the role that the oral microbiota plays in mental health disorders has gained recent attention. Oral microbiota can enter the bloodstream and trigger inflammatory responses or translocate to the brain through the trigeminal nerve or olfactory system. Hence, the concept of the oral microbiota-brain axis has emerged. Several hypotheses have been suggested that the oral microbiota can enter the gastrointestinal tract and affect the gut-brain axis; however, literature describing oral-brain communication remains limited. This review summarizes the characteristics of oral microbiota and its mechanisms associated with mental health disorders. Through a comprehensive examination of the relationship between oral microbiota and various neuropsychiatric diseases, such as anxiety, depression, schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, and dementia, this review seeks to identify promising avenues of future research.


Assuntos
Eixo Encéfalo-Intestino , Disbiose , Transtornos Mentais , Boca , Humanos , Disbiose/microbiologia , Transtornos Mentais/microbiologia , Boca/microbiologia , Eixo Encéfalo-Intestino/fisiologia , Microbiota/fisiologia , Microbioma Gastrointestinal/fisiologia , Encéfalo/microbiologia
14.
Appl Microbiol Biotechnol ; 108(1): 384, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896287

RESUMO

Bacteriocins have the potential to effectively improve food-borne infections or gastrointestinal diseases and hold promise as viable alternatives to antibiotics. This study aimed to explore the antibacterial activity of three bacteriocins (nisin, enterocin Gr17, and plantaricin RX-8) and their ability to attenuate intestinal barrier dysfunction and inflammatory responses induced by Listeria monocytogenes, respectively. Bacteriocins have shown excellent antibacterial activity against L. monocytogenes without causing any cytotoxicity. Bacteriocins inhibited the adhesion and invasion of L. monocytogenes on Caco-2 cells, lactate dehydrogenase (LDH), trans-epithelial electrical resistance (TEER), and cell migration showed that bacteriocin improved the permeability of Caco-2 cells. These results were attributed to the promotion of tight junction proteins (TJP) assembly, specifically zonula occludens-1 (ZO-1), occludin, and claudin-1. Furthermore, bacteriocins could alleviate inflammation by inhibiting the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways and reducing the secretion of interleukin-6 (IL-6), interleukin-1 ß (IL-1ß) and tumor necrosis factor α (TNF-α). Among three bacteriocins, plantaricin RX-8 showed the best antibacterial activity against L. monocytogenes and the most pronounced protective effect on the intestinal barrier due to its unique structure. Based on our findings, we hypothesized that bacteriocins may inhibit the adhesion and invasion of L. monocytogenes by competing adhesion sites. Moreover, they may further enhance intestinal barrier function by inhibiting the expression of L. monocytogenes virulence factors, increasing the expression of TJP and decreasing the secretion of inflammatory factors. Therefore, bacteriocins will hopefully be an effective alternative to antibiotics, and this study provides valuable insights into food safety concerns. KEY POINTS: • Bacteriocins show excellent antibacterial activity against L. monocytogenes • Bacteriocins improve intestinal barrier damage and inflammatory response • Plantaricin RX-8 has the best protective effect on Caco-2 cells damage.


Assuntos
Antibacterianos , Bacteriocinas , Listeria monocytogenes , Listeria monocytogenes/efeitos dos fármacos , Bacteriocinas/farmacologia , Humanos , Células CACO-2 , Antibacterianos/farmacologia , Inflamação , NF-kappa B/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Citocinas/metabolismo , Listeriose/microbiologia , Listeriose/tratamento farmacológico , Movimento Celular/efeitos dos fármacos
15.
J Clin Transl Hepatol ; 12(5): 481-495, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38779521

RESUMO

Background and Aims: Voriconazole (VRC), a widely used antifungal drug, often causes hepatotoxicity, which presents a significant clinical challenge. Previous studies demonstrated that Astragalus polysaccharide (APS) can regulate VRC metabolism, thereby potentially mitigating its hepatotoxic effects. In this study, we aimed to explore the mechanism by which APS regulates VRC metabolism. Methods: First, we assessed the association of abnormal VRC metabolism with hepatotoxicity using the Roussel Uclaf Causality Assessment Method scale. Second, we conducted a series of basic experiments to verify the promotive effect of APS on VRC metabolism. Various in vitro and in vivo assays, including cytokine profiling, immunohistochemistry, quantitative polymerase chain reaction, metabolite analysis, and drug concentration measurements, were performed using a lipopolysaccharide-induced rat inflammation model. Finally, experiments such as intestinal biodiversity analysis, intestinal clearance assessments, and Bifidobacterium bifidum replenishment were performed to examine the ability of B. bifidum to regulate the expression of the VRC-metabolizing enzyme CYP2C19 through the gut-liver axis. Results: The results indicated that APS does not have a direct effect on hepatocytes. However, the assessment of gut microbiota function revealed that APS significantly increases the abundance of B. bifidum, which could lead to an anti-inflammatory response in the liver and indirectly enhance VRC metabolism. The dual-luciferase reporter gene assay revealed that APS can hinder the secretion of pro-inflammatory mediators and reduce the inhibitory effect on CYP2C19 transcription through the nuclear factor-κB signaling pathway. Conclusions: The study offers valuable insights into the mechanism by which APS alleviates VRC-induced liver damage, highlighting its immunomodulatory influence on hepatic tissues and its indirect regulatory control of VRC-metabolizing enzymes within hepatocytes.

16.
Front Immunol ; 15: 1384516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765009

RESUMO

Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. In the brain, no detectable viral RNA and minimal residential immune cell activation was observed in the surviving mice post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and gene expression levels associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent systemic T helper 1 prone cellular immune responses and strong sera neutralizing antibodies against Delta and Omicron variants months post-acute infection. Overall, our findings suggest that infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long-COVID patients and provides new insights into the role of systemic and brain residential immune factors in PASC pathogenesis.


Assuntos
COVID-19 , Modelos Animais de Doenças , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Animais , COVID-19/imunologia , SARS-CoV-2/imunologia , Camundongos , Humanos , Encéfalo/virologia , Encéfalo/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino
17.
Foods ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790731

RESUMO

Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.

18.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38697545

RESUMO

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Assuntos
Epididimo , Fluoretos , MicroRNAs , RNA Mensageiro , Masculino , Animais , MicroRNAs/metabolismo , Fluoretos/toxicidade , Camundongos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
19.
Cell Biochem Biophys ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753248

RESUMO

Puerarin (Pue), a flavonoid compound, possesses cytoprotective effects and LPS has been reported to induce renal inflammatory injury in bovine. However, whether Pue inhibits lipopolysaccharide (LPS)-induced inflammatory damage of bovine kidney cells remains unknown. Based on an in vitro model with Madin-Darby bovine kidney (MDBK) cell line, it has found that Pue attenuated LPS-induced damage of MDBK cells, as evidenced by cell viability and lactic dehydrogenase (LDH) release rescued by Pue (P < 0.05). Additionally, the real-time quantitative PCR (qPCR) and enzyme linked immunosorbent assay (ELISA) showed that LPS elevated the levels of pro-inflammatory factors interleukin (IL)-1ß, IL-8 and tumor necrosis factor (TNF)-α, which was reversed by pretreatment of Pue (P < 0.05). Besides, Pue reduced the expression of Toll like receptor 4 (TLR4) and phosphorylated nuclear factor kappa B (p-NF-κB) of LPS-exposed MDBK cells (P < 0.05). Collectively, these results showed that Pue suppresses LPS-evoked inflammatory damage of bovine kidney cells, suggesting Pue a potential compound for intervention of bovine inflammation.

20.
Front Mol Biosci ; 11: 1371549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712343

RESUMO

This review highlighted the pivotal role of zyxin, an essential cell focal adhesions protein, in cellular biology and various diseases. Zyxin can orchestrate the restructuring and dynamic alterations of the cellular cytoskeleton, which is involved in cell proliferation, adhesion, motility, and gene transcription. Aberrant zyxin expression is closely correlated with tumor cell activity and cardiac function in both tumorigenesis and cardiovascular diseases. Moreover, in fibrotic and inflammatory conditions, zyxin can modulate cellular functions and inflammatory responses. Therefore, a comprehensive understanding of zyxin is crucial for deciphering signal transduction networks and disease pathogenesis. Investigating its role in diseases holds promise for novel avenues in early diagnosis and therapeutic strategies. Nevertheless, targeting zyxin as a therapeutic focal point presents challenges in terms of specificity, safety, drug delivery, and resistance. Nonetheless, in-depth studies on zyxin and the application of precision medicine could offer new possibilities for personalized treatment modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...