Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Brain Pathol ; 34(1): e13200, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581289

RESUMO

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Humanos , Proteína P0 da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação/genética , Proteínas/genética , Biópsia
2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119572, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659504

RESUMO

Heterozygous germline variants in ATP1A1, the gene encoding the α1 subunit of the Na+/K+-ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na+ and K+ that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1+/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1+/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1-related diseases despite carrying a plasma-membrane protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.


Assuntos
Doença de Charcot-Marie-Tooth , ATPase Trocadora de Sódio-Potássio , Adulto , Animais , Humanos , Camundongos , Alelos , Doença de Charcot-Marie-Tooth/genética , Isoformas de Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Handb Clin Neurol ; 195: 609-617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562889

RESUMO

The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Testes Genéticos , Mutação/genética , Fenótipo
4.
J Peripher Nerv Syst ; 28(3): 382-389, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166413

RESUMO

OBJECTIVE: To evaluate the parent-proxy version of the pediatric Charcot Marie Tooth specific quality of life (pCMT-QOL) outcome instrument for children aged 7 or younger with CMT. We have previously developed and validated the direct-report pCMT-QOL for children aged 8-18 years and a parent proxy version of the instrument for children 8-18 years old. There is currently no CMT-QOL outcome measure for children aged 0-7 years old. METHODS: Testing was conducted in parents or caregivers of children aged 0-7 years old with CMT evaluated at participating INC sites from the USA, United Kingdom, and Australia. The development of the instrument was iterative, involving identification of relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus group interviews, and psychometric testing. The parent-proxy instrument was validated rigorously by examining previously identified domains and undergoing psychometric tests for children aged 0-7. RESULTS: The parent-proxy pCMT-QOL working versions were administered to 128 parents/caregivers of children aged 0-7 years old between 2010 and 2016. The resulting data underwent rigorous psychometric analysis, including factor analysis, internal consistency, and convergent validity, and longitudinal analysis to develop the final parent-proxy version of the pCMT-QOL outcome measure for children aged 0-7 years old. CONCLUSIONS: The parent-proxy version of the pCMT-QOL outcome measure, known as the pCMT-QOL (0-7 years parent-proxy) is a valid and sensitive proxy measure of health-related QOL for children aged 0-7 years with CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Qualidade de Vida , Humanos , Criança , Adolescente , Recém-Nascido , Lactente , Pré-Escolar , Estudos Prospectivos , Pais , Procurador , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários
5.
J Peripher Nerv Syst ; 28(2): 150-168, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965137

RESUMO

Charcot-Marie-Tooth (CMT) neuropathies are a group of genetically and phenotypically heterogeneous disorders that predominantly affect the peripheral nervous system. Unraveling the genetic and molecular mechanisms, as well as the cellular effects of CMT mutations, has facilitated the development of promising gene therapy approaches. Proposed gene therapy treatments for CMTs include virally or non-virally mediated gene replacement, addition, silencing, modification, and editing of genetic material. For most CMT neuropathies, gene- and disease- and even mutation-specific therapy approaches targeting the neuronal axon or myelinating Schwann cells may be needed, due to the diversity of underlying cellular and molecular-genetic mechanisms. The efficiency of gene therapies to improve the disease phenotype has been tested mostly in vitro and in vivo rodent models that reproduce different molecular and pathological aspects of CMT neuropathies. In the next stage, bigger animal models, in particular non-human primates, provide important insights into the translatability of the proposed administration and dosing, demonstrating scale-up potential and safety. The path toward clinical trials is faced with further challenges but is becoming increasingly feasible owing to the progress and knowledge gained from clinical applications of gene therapies for other neurological disorders, as well as the emergence of sensitive outcome measures and biomarkers in patients with CMT neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/patologia , Mutação , Fenótipo , Células de Schwann
6.
Rev Neurol (Paris) ; 179(1-2): 35-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36588067

RESUMO

Charcot-Marie-Tooth (CMT) is a heterogeneous group of inherited neuropathies that affect the peripheral nerves and slowly cause progressive disability. Currently, there is no effective therapy. Patients' management is based on rehabilitation and occupational therapy, fatigue, and pain treatment with regular follow-up according to the severity of the disease. In the last three decades, much progress has been made to identify mutations involved in the different types of CMT, decipher the pathophysiology of the disease, and identify key genes and pathways that could be targeted to propose new therapeutic strategies. Genetic therapy is one of the fields of interest to silence genes such as PMP22 in CMT1A or to express GJB1 in CMT1X. Among the most promising molecules, inhibitors of the NRG-1 axis and modulators of UPR or the HDACs enzyme family could be used in different types of CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Mutação , Proteínas/genética , Nervos Periféricos
7.
Neural Regen Res ; 18(7): 1434-1440, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571339

RESUMO

Charcot-Marie-Tooth neuropathies (CMT) constitute a group of common but highly heterogeneous, non-syndromic genetic disorders affecting predominantly the peripheral nervous system. CMT type 1A (CMT1A) is the most frequent type and accounts for almost ~50% of all diagnosed CMT cases. CMT1A results from the duplication of the peripheral myelin protein 22 (PMP22) gene. Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response. This leads to Schwann cell apoptosis, dys- and de- myelination and secondary axonal degeneration, ultimately causing neurological disabilities. During the last decades, several different gene therapies have been developed to treat CMT1A. Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22. The therapeutic goal is to achieve gene silencing, directly or indirectly, thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss. As promising treatments are rapidly emerging, treatment-responsive and clinically relevant biomarkers are becoming necessary. These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.

8.
Rev Neurol (Paris) ; 179(1-2): 10-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36566124

RESUMO

Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética
9.
Muscle Nerve ; 66(4): 479-486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894586

RESUMO

INTRODUCTION/AIMS: Carpal and cubital tunnel syndrome (CTS, CuTS) are common among patients with hereditary neuropathy with liability to pressure-palsies (HNPP) and Charcot-Marie-Tooth type 1A (CMT1A) and may impact quality of life. We aimed to evaluate the utility of nerve decompression surgeries in these patients. METHODS: Medical records were reviewed for patients with PMP22 mutations confirmed in Mayo Clinic laboratories from January 1999 to December 2020, who had CTS and CuTS and underwent surgical decompression. RESULTS: CTS occurred in 53.3% of HNPP and 11.5% of CMT1A, while CuTS was present in 43.3% of HNPP and 5.8% of CMT1A patients. CTS decompression occurred in 10-HNPP and 5-CMT1A patients, and CuTS decompression with/without transposition was performed in 5-HNPP and 1-CMT1A patients. In HNPP, electrodiagnostic studies identified median neuropathy at the wrist in 9/10 patients and ultrasound showed focal enlargements at the carpal and cubital tunnels. In CMT1A, median and ulnar sensory responses were all absent, and the nerves were diffusely enlarged. After CTS surgery, pain, sensory loss, and strength improved in 4/5 CMT1A, and 6/10 HNPP patients. Of clinical, electrophysiologic and ultrasound findings, only activity-provoked features significantly correlated with CTS surgical benefit in HNPP patients (odds ratio = 117.0:95% confidence interval, 1.94 > 999.99, p = 0.01). One CMT1A and one HNPP patient improved with CuTS surgery while 2 HNPP patients worsened. DISCUSSION: CTS symptom improvement post-surgery can be seen in CMT1A and (less frequent) in HNPP patients. CuTS surgery commonly worsened course in HNPP. Activity-provoked symptoms in HNPP best informed benefits from CTS surgery.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Artrogripose , Doença de Charcot-Marie-Tooth/genética , Descompressão , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/cirurgia , Humanos , Qualidade de Vida
10.
Gait Posture ; 96: 73-80, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597049

RESUMO

BACKGROUND: Children with the most common inherited neuropathy, Charcot-Marie-Tooth disease (CMT), are often prescribed ankle-foot orthoses (AFOs) to improve walking ability and prevent falls by reducing foot drop, postural instability, and other gait impairments. These externally worn assistive devices are traditionally custom-made using thermoplastic vacuum forming. This labour-intensive manufacturing process often results in AFOs which are cumbersome due to limited design options, and are associated with low acceptability, discomfort, and suboptimal impact on gait. The aim of this study was to determine how 3D printing can be used to replicate and redesign AFOs in children with CMT. METHODS: Traditional AFOs, 3D printed replica AFOs (same design as traditional AFOs), 3D printed redesigned AFOs and a shoes only control condition were compared in 12 children with CMT. 3D printed AFOs were manufactured using material extrusion in Nylon-12. 3D gait analysis (temporal-spatial, kinematic, kinetic), in-shoe pedobarography and self-reported satisfaction were used to compare conditions. The primary kinematic and kinetic outcome measures were maximum ankle dorsiflexion in swing and maximum ankle dorsiflexor moment in loading response, to capture foot drop and an absent of heel rocker. RESULTS: The 3D printed replica AFOs were comparable to traditional AFOs for all outcomes. The 3D printed replica AFOs improved foot position at initial contact and during loading response and significantly reduced pressure beneath the whole foot, rearfoot and forefoot compared to the shoes only. The 3D printed redesigned AFOs produced a device that was significantly lighter (mean -35.2, SD 13.3%), and normalised maximum ankle dorsiflexor moment in loading response compared to shoes only and traditional AFOs. SIGNIFICANCE: 3D printing can be used to replicate traditional handmade AFOs and to redesign AFOs to produce a lighter device with improved biomechanics by incorporating novel design features.


Assuntos
Doença de Charcot-Marie-Tooth , Órtoses do Pé , Neuropatias Fibulares , Tornozelo , Fenômenos Biomecânicos , Criança , Marcha/fisiologia , Humanos , Impressão Tridimensional
11.
Neuropathol Appl Neurobiol ; 48(5): e12817, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35342985

RESUMO

AIMS: We aim to present data obtained from three patients belonging to three unrelated families with an infantile onset demyelinating neuropathy associated to somatic and neurodevelopmental delay and to describe the underlying genetic changes. METHODS: We performed whole-exome sequencing on genomic DNA from the patients and their parents and reviewed the clinical, muscle and nerve data, the serial neurophysiological studies, brain and muscle MRIs, as well as the respiratory chain complex activity in the muscle of the three index patients. Computer modelling was used to characterise the new missense variant detected. RESULTS: All three patients had a short stature, delayed motor milestone acquisition, intellectual disability and cerebellar abnormalities associated with a severe demyelinating neuropathy, with distinct morphological features. Despite the proliferation of giant mitochondria, the mitochondrial respiratory chain complex activity in skeletal muscle was normal, except in one patient in whom there was a mild decrease in complex I enzyme activity. All three patients carried the same two compound heterozygous variants of the TRMT5 (tRNA Methyltransferase 5) gene, one known pathogenic frameshift mutation [c.312_315del (p.Ile105Serfs*4)] and a second rare missense change [c.665 T > C (p.Ile222Thr)]. TRMT5 is a nuclear-encoded protein involved in the post-transcriptional maturation of mitochondrial tRNA. Computer modelling of the human TRMT5 protein structure suggests that the rare p.Ile222Thr mutation could affect the stability of tRNA binding. CONCLUSIONS: Our study expands the phenotype of mitochondrial disorders caused by TRTM5 mutations and defines a new form of recessive demyelinating peripheral neuropathy.


Assuntos
Doenças Mitocondriais , Doenças do Sistema Nervoso Periférico , tRNA Metiltransferases , Humanos , Doenças Mitocondriais/patologia , Mutação , Fenótipo , RNA de Transferência , Síndrome , tRNA Metiltransferases/genética
12.
Brain Sci ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34827446

RESUMO

There is still no effective drug treatment available for Charcot-Marie-Tooth neuropathies (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment of pain; fatigue and cramps are frequent complaints that are difficult to treat. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing, to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second-phase III trial is ongoing. Gene therapy to substitute defective genes or insert novel ones and compounds acting on pathways important for different CMT types are being developed and tested in animal models. Modulation of the Neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as P0 in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2X7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.

13.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205075

RESUMO

Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Terapia Genética , Proteína P0 da Mielina/genética , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Inativação Gênica , Humanos , Mutação/genética , Proteína P0 da Mielina/antagonistas & inibidores , Proteínas da Mielina/antagonistas & inibidores , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia
14.
Clin Neurol Neurosurg ; 208: 106829, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332267

RESUMO

INTRODUCTION: Point mutations in the Peripheral Myelin Protein 22 (PMP22) gene comprise less than 5% of the Charcot-Marie-Tooth (CMT) type 1 cases, and individualize either the CMT 1E subtype, or Hereditary Neuropathy with Liability to Pressure Palsy. The phenotype of CMT 1E presents with a severe early-onset polyneuropathy associated with deafness, although the clinical spectrum is broad. CASE REPORT: We describe a novel PMP22 gene point mutation (c.84G>T;p.(Trp28Cys)) in three patients of a Portuguese family with variable phenotypes, ranging from asymptomatic to mild complaints of distal limb numbness and gait difficulties, with the age of onset of symptoms ranging from mid-twenties to late-sixties, and no associated disability. In all affected patients, there was evidence of diffuse demyelinating sensorimotor polyneuropathy. Hearing loss does not seem to be associated with this variant, albeit neuropathic pain was reported. CONCLUSIONS: These findings suggest that this particular point mutation in the PMP22 gene is associated with a mild phenotype, further emphasizing that there are still unknown mechanisms (genetic and/or epigenetic) that may play a role in the clinical spectrum of CMT1E patients. Next generation sequencing panels including commonly mutated genes in CMT should be considered in CMT1 cases negative for PMP22 gene duplication.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas da Mielina/genética , Mutação Puntual , Adulto , Idoso , Doença de Charcot-Marie-Tooth/fisiopatologia , Análise Mutacional de DNA , Feminino , Humanos , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Linhagem , Fenótipo , Portugal
15.
J Peripher Nerv Syst ; 26(2): 167-176, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624350

RESUMO

The long-term sequelae of nerve injury as well as age-related neurodegeneration have been documented in numerous studies, however the role of Cx32 in these processes is not well understood. There is a need for better understanding of the molecular mechanisms that underlie long-term suboptimal nerve function and for approaches to prevent or improve it. In this communication we describe our studies using whole animal electrophysiology to examine the long-term sequelae of sciatic nerve crush in both WT and Cx32KO mice, a model of X-linked Charcot Marie Tooth disease, a subtype of inherited peripheral neuropathies. We present results from electrical nerve recordings done 14 to 27 days and 18 to 20 months after a unilateral sciatic nerve crush performed on 35 to 37-day old mice. Contrary to expectations, we find that whereas crush injury leads to a degradation of WT nerve function relative to uninjured nerves at 18 to 20 months, previously crushed Cx32KO nerves perform at the same level as their uninjured counterparts. Thus, 18 to 20 months after injury, WT nerves perform below the level of normal (uninjured) WT nerves in both motor and sensory nerve function. In contrast, measures of nerve function in Cx32KO mice are degraded for sensory axons but exhibit no additional dysfunction in motor axons. Early nerve injury has no negative electrophysiologic effect on the Cx32 KO motor nerves. Based on our prior demonstration that the transcriptomic profile of uninjured Cx32KO and injured WT sciatic nerves are very similar, the lack of an additional effect of crush on Cx32KO motor nerve parameters suggests that Cx32 knockout may implement a form of neuroprotection that limits the effects of subsequent injury.


Assuntos
Neuroproteção , Envelhecimento/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Conexinas , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Regeneração Nervosa , Nervo Isquiático , Proteína beta-1 de Junções Comunicantes
16.
Muscle Nerve ; 63(5): 745-750, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543778

RESUMO

INTRODUCTION: The pathophysiological significance of the Fabry-related, non-classical variant p.D313Y still remains to be solved. This study assesses the involvement of the peripheral nervous system with respect to small fiber neuropathy and neuropathic pain in female patients carrying p.D313Y. METHODS: This study examined nine females carrying the Fabry-related p.D313Y variant by obtaining skin punch biopsies above the right lateral malleolus. Intraepidermal nerve fiber density was determined for each patient and compared to reference values matched for the patient's decade of life and sex. Moreover, each patient was characterized by a detailed neurological examination and by pain assessment via questionnaire. RESULTS: Compared to sex-matched lower fifth percentile reference values per decade, intraepidermal nerve fiber density was decreased in seven out of nine patients. Four patients reported acral paresthesias and neuropathic pain with an average visual analogue scale score of 7 out of 10 points. Two patients experienced acute pain crises. Six out of seven patients diagnosed with small fiber neuropathy had a their medical history of hypo- and/or hyperhidrosis. DISCUSSION: The diagnosis of small fiber neuropathy was made in seven out of nine females carrying the non-classical variant p.D313Y. Moreover, neuropathic pain and symptoms indicative of autonomic nervous system dysfunction seem to be common findings that may be of clinical significance and may warrant therapeutic intervention.


Assuntos
Neuropatia de Pequenas Fibras/diagnóstico , alfa-Galactosidase/genética , Adulto , Idoso , Biópsia , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Exame Neurológico , Pele/inervação , Pele/patologia , Neuropatia de Pequenas Fibras/genética , Neuropatia de Pequenas Fibras/patologia , Neuropatia de Pequenas Fibras/fisiopatologia , Adulto Jovem
17.
Neuromuscul Disord ; 31(2): 113-122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386210

RESUMO

Inherited neuropathies are amongst the most common neuromuscular disorders. The distinction from chronic inflammatory demyelinating polyneuropathy (CIDP) may be challenging, considering its rarity in childhood, that genetic neuropathies may show secondary inflammatory features, and that subacute CIDP presentations may closely mimic the disease course of inherited disorders. The overlap between genetic neuropathies and CIDP is increasingly recognized in adults but rarely reported in children. Here we report 4 children with a neuropathy of subacute onset, initially considered consistent with an immune-mediated neuropathy based on suggestive clinical, laboratory and neurophysiological features. None showed convincing response to intravenous immunoglobulin therapy, leading to re-evaluation and confirmation of a genetic neuropathy in each case (including PMP22, MPZ and SH3TC2 genes). A review of the few Paediatric cases reported in the literature showed similar delays in diagnosis and no significant changes to immunomodulatory treatment. Our findings emphasize the importance of considering an inherited neuropathy in children with a CIDP-like presentation. In addition to an inconclusive response to treatment, subtle details of the family and developmental history may indicate a genetic rather than an acquired background. Correct diagnostic confirmation of a genetic neuropathy in a child is crucial for appropriate management, prognostication and genetic counselling.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Adolescente , Criança , Progressão da Doença , Eletrodiagnóstico , Feminino , Humanos , Masculino , Mutação , Condução Nervosa , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética
18.
J Peripher Nerv Syst ; 25(4): 423-428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107133

RESUMO

Minifascicular neuropathy (MN) is a rare, autosomal recessive disease with prominent structural changes of peripheral nerves. So far, it has been observed in females with a 46,XY karyotype and mutations of the Desert Hedgehog (DHH) gene, thus linking MN to gonadal dysgenesis (GD) and disorders of sex development (DSD). However, a 46,XX proband with normal female sex and gender development underwent clinical evaluations, nerve conduction studies and genetic screening for a severe motor-sensory neuropathy with a pathological phenotype that hinted at MN. Indeed, sural nerve biopsy revealed a profound disturbance of perineurium development with a thin and loose structure. High-resolution ultrasound (HRUS) also disclosed diffuse changes of nerve echotexture that visibly correlated with the pathological features. After extensive genetic testing, a novel homozygous DHH null mutation (p.Ser185*) was identified in the proband and in her sister, who was affected by a similar motor-sensory neuropathy, but was eventually found to be a 46,XY patient according to a late diagnosis of DSD with complete GD. DHH should therefore be considered as a possible cause of rare non-syndromic hereditary motor-sensory neuropathies, regardless of DSD. Furthermore, HRUS could effectively smooth the complex diagnostic workup as it demonstrated a high predictive power to detect MN, providing the same detailed correlations to the pathologic features of the nerve biopsy and Dhh-/- mice in both sisters. Hence, HRUS may assume a pivotal role in guiding molecular analysis in individuals with or without DSD.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Proteínas Hedgehog/genética , Neuropatia Hereditária Motora e Sensorial , Consanguinidade , Feminino , Testes Genéticos , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Microscopia Acústica , Pessoa de Meia-Idade , Irmãos , Nervo Sural/patologia , Síndrome
19.
BMC Med Genet ; 21(1): 45, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122354

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is one of the most commonly inherited neurological disorders. A growing number of genes, involved in glial and neuronal functions, have been associated with different subtypes of CMT leading to improved diagnostics and understanding of pathophysiological mechanisms. However, some patients and families remain genetically unsolved. METHODS: We report on a German family including four affected members over three generations with a CMT phenotype accompanied by cognitive deficits, predominantly with regard to visual abilities and episodic memory. RESULTS: A comprehensive clinical characterization followed by a sequential diagnostic approach disclosed a heterozygous rare SEPT9 missense variant c.1406 T > C, p.(Val469Ala), that segregates with disease. SEPT9 has been linked to various intracellular functions, such as cytokinesis and membrane trafficking. Interestingly, SEPT9-mutations are known to cause hereditary neuralgic amyotrophy (HNA), a recurrent focal peripheral neuropathy. CONCLUSION: We, for the first time, present a SEPT9 variant associated to a CMT phenotype and suggest SEPT9 as new sufficient candidate gene in CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Polimorfismo de Nucleotídeo Único , Septinas/genética , Adulto , Alanina/genética , Substituição de Aminoácidos/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Família , Feminino , Frequência do Gene , Genes Dominantes , Alemanha , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Valina/genética , Adulto Jovem
20.
Muscle Nerve ; 60(6): 744-748, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469427

RESUMO

INTRODUCTION: Nerve cross-sectional area (CSA) is larger than normal in Charcot-Marie-Tooth disease 1A (CMT1A), although to a variable extent. We explored whether CSA is correlated with CMT clinical severity measured with neuropathy score version 2 (CMTNS2) and its examination subscore (CMTES2) in CMT1A. METHODS: We assessed 56 patients with CMT1A (42 families). They underwent nerve conduction study (NCS) and nerve high-resolution ultrasound (HRUS) of the left median, ulnar, and fibular nerves. RESULTS: Univariate analysis showed NCS and HRUS variables to be significantly correlated with CMTNS2 and CMTES2 and with each other. Multivariate analysis showed that ulnar motor nerve conduction velocity (ß: -0.19) and fibular compound muscle action potential amplitude (-1.50) significantly influenced CMTNS2 and that median forearm CSA significantly influenced CMTNS2 (ß: 5.29) and CMTES2 (4.28). DISCUSSION: Nerve size is significantly associated with clinical scores in CMT1A, which suggests that it might represent a potential biomarker of CMT damage and progression.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Nervo Mediano/fisiopatologia , Condução Nervosa/fisiologia , Nervo Fibular/fisiopatologia , Nervo Ulnar/fisiopatologia , Adulto , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Masculino , Nervo Mediano/diagnóstico por imagem , Nervo Mediano/patologia , Pessoa de Meia-Idade , Tamanho do Órgão , Nervo Fibular/diagnóstico por imagem , Nervo Fibular/patologia , Índice de Gravidade de Doença , Nervo Ulnar/diagnóstico por imagem , Nervo Ulnar/patologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...