Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.075
Filtrar
1.
Parasit Vectors ; 17(1): 330, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103931

RESUMO

BACKGROUND: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS: We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS: Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS: This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.


Assuntos
Aedes , Bactérias , Resistência a Inseticidas , Inseticidas , Larva , Nitrilas , Piretrinas , RNA Ribossômico 16S , Simbiose , Animais , Piretrinas/farmacologia , Nitrilas/farmacologia , Aedes/microbiologia , Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/microbiologia , Larva/efeitos dos fármacos , RNA Ribossômico 16S/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Microbioma Gastrointestinal/efeitos dos fármacos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , DNA Bacteriano/genética , Trato Gastrointestinal/microbiologia
2.
Pest Manag Sci ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101699

RESUMO

BACKGROUND: Popillia japonica Newman is a scarab beetle native to Japan that is considered a serious pest outside its native range. It can feed on more than 400 host plants and spread about 10 km per year in invaded territories, therefore it is considered the second most important quarantine pest in Europe. Both chemical and biological insecticides have been used for control, with variable results. Despite ongoing efforts, P. japonica remains a threat in invaded countries, and it is necessary to test more effective and sustainable solutions in the context of integrated pest management. Here we present a study on long-lasting insecticide-treated nets (LLINs) assembled in semiochemical-baited attract-and-kill devices (A&Ks) as a means to control adults of P. japonica with low environmental impact. This study complements previous ones in which we first evaluated the effectiveness of the LLINs in the laboratory and then tested both effectiveness and duration in field-exposed A&Ks against P. japonica. In the present work we compared the effectiveness of three different densities of A&Ks per hectare in areas where the population of P. japonica was numerically homogeneous. RESULTS: The different densities of A&K (1, 2, 4 A&Ks per ha) resulted in an overall reduction of the population of P. japonica by about two thirds in comparison to the control area. CONCLUSIONS: This study suggests that the use of one A&K per hectare, requiring minimal management effort, is an effective ratio for reducing local populations of P. japonica. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
J Econ Entomol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115807

RESUMO

Insecticide resistance is widespread in global bed bug populations. Both common bed bugs and tropical bed bugs are pyrethroid-resistant among most field populations. Plant-based products and nonconventional pesticides offer minimal-risk strategies for managing bed bug resistance, but this strategy has yet to be formally evaluated in Cimex hemipterus (F.) (Hemiptera: Cimicidae). Here, several commercial plant-based formulations (Cedarcide, EcoRaider (also known as EcoVenger), EcoSMART, and Bio-D), a novel product, Provecta, and a pyrethroid insecticide, Pesguard FG161 were tested against pyrethroid-susceptible and resistant strains of C. hemipterus using direct spray, residual exposure, and egg dipping assays. Direct spray treatments outperform residual applications against all tested bed bug strains. Cedarcide exhibits the highest consistency in eliminating bed bugs, followed by EcoRaider, EcoSMART, and Provecta that outperform Bio-D and Pesguard FG161. In comparison to Pesguard FG161, all plant-based insecticide products and Provecta showed higher efficacy against pyrethroid-resistant strains. Although effective, product efficacy varies in terms of speed. Cedarcide kills all bed bugs within 1 min after spraying; however, other products can take up to 9 days to achieve 100% mortality. The efficacy of all products was reduced when evaluated on fabric surface (42%-65% mortality). Cedarcide and EcoRaider reduced egg hatchability by 37%-73% and 47%-70%, respectively. This study suggests that certain plant-based insecticides and an unconventional insecticide can serve as alternative direct spray treatments for managing tropical bed bugs, though their residual effects are limited.

4.
Pest Manag Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105428

RESUMO

BACKGROUND: Long-lasting insecticide-incorporated netting (LLIN) has been used to deliver contact insecticides as an integrated pest management tool for stored product insect pests in food facilities. Although the presence of food is known to improve insect recovery after exposure, it is not clear whether food nutritional quality plays a role. Here, the red flour beetle Tribolium castaneum adults were exposed to two commercially available LLINs, Carifend (active ingredient α-cypermethrin) and D-Terrence (deltamethrin), then transferred to Petri dishes with foods with varying nutritional quality (e.g., 0-100% ratios of flour to non-nutritive cellulose). We investigated the effects of nutrition, LLIN type, and exposure time on post-exposure recovery, mortality, and mobility. RESULTS: After exposure for 2-168 h, the immediate mortality of T. castaneum adults ranged from 0.5% to 91.0% with Carifend and 0% to 75.3% with D-Terrence. Adult recovery and delayed mortality were significantly affected by nutritional quality, LLIN type, exposure time, and recovery time. For both LLINs, adult recovery increased over time, with a trend for higher recovery and lower mortality with increasing nutritional quality and decreasing exposure time. In addition, adult mobility decreased multiple-fold after Carifend or D-Terrence exposure for 30, 60 or 90 min compared to 10 min. CONCLUSION: This study shows nutrition significantly modulates the efficacy of LLIN against T. castaneum, and thus strengthens the rationale for implementing stringent sanitation protocols for food facility managers. © 2024 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

5.
Int J Biol Macromol ; 278(Pt 3): 134942, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173804

RESUMO

Plant essential oils and their components have broad application prospects as substitutes for chemical pesticides. However, the burst release and persistence time need to be optimized. In this study, 1,8-cineole (1,8-CIN) was embedded in degradable cellulose acetate (CA) by electrospinning to achieve sustained release. The results showed that the sustained-release membrane had good morphology and thermal stability. The release test showed that the deficiency of the explosive release of 1,8-CIN improved after encapsulation, and 21.74 % of the drug remained after 42 days. In the application test, the fiber membrane could kill the test insects in a short period of time and affect the behavior choices of the test insects. It affected the growth and oviposition of the test insects and reduced adult longevity by 13.64 % and oviposition by 23.35 %. This study can improve the utilization rate of pesticides, alleviate environmental pressure, and provide new ideas for pest control.

6.
Sci Rep ; 14(1): 19821, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191827

RESUMO

Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Inseticidas/farmacologia , Malária/transmissão , Filogenia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Piretrinas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
7.
Parasit Vectors ; 17(1): 363, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192348

RESUMO

BACKGROUND: Knockdown resistance (kdr) is one of the primary resistance mechanisms present in anopheline species. Although this mutation is largely spread across the Anopheles gambiae s.l. members, its prevalence in other species is still not well documented. METHODS: The present study investigated the distribution and allelic frequencies of kdr in An. gambiae s.l., An. pharoensis, and An. ziemanni samples collected in 2022 and 2023 in nine sites spread across five ecogeographical settings in Cameroon. Members of the An. gambiae complex were identified molecularly by polymerase chain reaction (PCR). kdr L1014F and L1014S alleles were screened by PCR and confirmed by sequencing. RESULTS: An. gambiae (49.9%), An. coluzzii (36.5%), and An. arabiensis (13%) were identified, and the frequency of the kdr L1014F was high in both An. gambiae and An. coluzzii in all sites. The kdr L1014F allele was detected for the first time in 8 out of 14 An. ziemanni samples examined and in 5 out of 22 An. pharoensis samples examined. The kdr L1014S allele was scarce and found only in the heterozygote "RS" state in An. arabiensis and An. gambiae in Yangah and Santchou. CONCLUSIONS: The present study sheds light on the rapid expansion of the kdr L1014F allele in malaria vectors in Cameroon and stresses the need for surveillance activities also targeting secondary malaria vectors to improve the control of malaria transmission.


Assuntos
Alelos , Anopheles , Frequência do Gene , Resistência a Inseticidas , Mosquitos Vetores , Anopheles/genética , Animais , Camarões , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Mutação , Inseticidas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Reação em Cadeia da Polimerase
8.
Insects ; 15(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39194782

RESUMO

The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is causing extensive economic losses in tree fruit crops. Including attract-and-kill (AK) strategies targeting BMSBs in an integrated pest management framework could reduce the amounts of insecticides sprayed and benefit growers, consumers and the environment. This study evaluated the effectiveness of an area-wide AK strategy across an intensive fruticulture region of Northern Italy, comparing four paired pear sites with and without two AK stations ha-1. These stations consisted of long-lasting insecticide-treated nets containing alpha-cypermethrin, baited with the BMSB aggregation pheromone and synergist. BMSB abundance was estimated using black-standing monitoring traps, and fruit damage upon harvest was recorded across all sites. The AK stations did not decrease the BMSB abundance nor the fruit damage, while after harvest significantly lower BMSB captures were detected in the AK sites compared to the control sites. Whilst the lures' efficacy was corroborated by this research, the killing method requires improvement and refinement.

9.
Malar J ; 23(1): 238, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127692

RESUMO

BACKGROUND: Insecticide-treated nets (ITNs) are pivotal tools for malaria prevention in endemic regions like Ghana. Understanding the protective factors and barriers influencing ITN ownership and usage is crucial for designing effective interventions. A scoping review was conducted to identify studies exploring protective factors and barriers related to ITN ownership and usage. METHODS: This review followed the guidelines by Askey and O'Malley. Search was done in four major databases including PubMed, Science Direct, PubMed CENTRAL, and JSTOR. Additional searches were done in Google Scholar and Google. Peer-reviewed and grey literature were included. RESULTS: A total of 24 papers met the eligibility criteria and were included in the review. Included studies found regional disparities in ITN ownership and usage. Furthermore, included studies reported ownership rates between 97.8 and 28% and usage rates between 94 and 20%. Protective factors facilitating ITN ownership were marital status, higher educational attainment, higher income levels, and being aged 25 years or older. In contrast, the factors for its use included community-level campaigns advocating for ITN use and awareness, individuals with secondary education or higher and those residing in urban areas. Missed opportunities in free distribution exercises and the unavailability of subsidized ITNs at health facilities were barriers to ownership. CONCLUSION: Understanding and addressing protective factors and barriers influencing ITN ownership and usage are crucial for enhancing malaria prevention strategies and achieving sustainable progress in combating malaria in endemic areas. Collaborative and evidence-based interventions are essential for addressing these challenges effectively.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Propriedade , Gana , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Propriedade/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Controle de Mosquitos/métodos , Humanos
10.
Gates Open Res ; 8: 56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170853

RESUMO

Background: Resistance monitoring is a key element in controlling vector-borne diseases. The World Health Organization (WHO) and Centres for Disease Control and Prevention (CDC) have each developed bottle bioassay methods for determining insecticide susceptibility in mosquito vectors which are used globally. Methods: This study aimed to identify variations in bottle bioassay methodologies and assess the potential impact on the data that is generated. Our approach involved a systematic examination of existing literature and protocols from WHO and CDC, with a focus on the specifics of reported methodologies, variation between versions, and reported outcomes. Building on this, we experimentally evaluated the impact of several variables on bioassay results. Results: Our literature review exposed a significant inconsistency in the how bioassay methods are reported, hindering reliable interpretation of data and the ability to compare results between studies. The experimental research provided further insight by specifically identifying two key factors that influence the outcomes of bioassays: mosquito dry weight and relative humidity (RH). This finding not only advances our comprehension of these assays but also underscores the importance of establishing precisely defined methodologies for resistance monitoring. The study also demonstrates the importance of controlling bioassay variables, noting the significant influence of wing length, as an indicator of mosquito size, on mortality rates in standardized bioassays. Conclusions: Generating data with improved protocol consistency and precision will not only deepen our understanding of resistance patterns but also better inform vector control measures. We call for continued research and collaboration to refine and build consensus on bioassay techniques, to help bolster the global effort against vector-borne diseases like malaria.


Assuntos
Bioensaio , Centers for Disease Control and Prevention, U.S. , Mosquitos Vetores , Organização Mundial da Saúde , Bioensaio/métodos , Animais , Estados Unidos , Resistência a Inseticidas , Humanos , Inseticidas , Controle de Mosquitos/métodos , Culicidae
11.
J Hazard Mater ; 478: 135566, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39173384

RESUMO

Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to ß-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after ß-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to ß-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to ß-cypermethrin, and the recombinant proteins of both genes could significantly metabolise ß-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and ß-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers ß-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.

12.
Environ Toxicol Pharmacol ; 110: 104536, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153725

RESUMO

Fipronil (FP) is an insecticide used in the treatment and control of pests, but it also adversely affects bees. Currently, there is no data on the genotoxic effects of FP in the brain of bumblebees. Thus, through the comet assay and routine morphological analysis, we analyzed the morphological effects and potential genotoxicity of environmentally relevant concentrations of FP on the brain of Bombus atratus. Bumblebees were exposed at concentrations of 2.5 µg/g and 3.5 µg/g for 96 hours. After the exposure, the brains were removed for morphological and morphometric analysis, and the comet assay procedure - used to detect DNA damage in individual cells using electrophoresis. Our data showed that both concentrations (2.5 µg/g and 3.5 µg/g) caused DNA damage in brain cells. These results corroborate the morphological data. We observed signs of synapse loss in the calyx structure, intercellular spaces between compact inner and non-compact inner cells, and cell swelling. This study provides unprecedented evidence of the effects of FP on DNA and cellular structures in the brain of B. atratus and reinforces the need to elucidate its toxic effects on other species to allow future risk assessments and conservation projects.

13.
Sci Total Environ ; 951: 175622, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39163943

RESUMO

Neonicotinoid insecticides move from targeted crops to wildflowers located in adjacent field margins, acting as a potential exposure source for wild pollinators and insect species of conservation concern, including monarch butterflies. Monarchs rely on milkweed over multiple life stages, including as a host plant for eggs and a food source for both larvae (leaves) and adults (flowers). Milkweeds, which are closely associated with field margins, can contain neonicotinoid residues, but previous assessments are constrained to a single plant tissue type. In 2017 and 2018, we sampled milkweeds from 95 field margins adjacent to crop fields (corn, soybean, hay, wheat, and barley) in agricultural landscapes of eastern Ontario, Canada. Milkweeds were sampled during the flower blooming period and leaves and flower tissues were analysed. The neonicotinoids acetamiprid, clothianidin, thiamethoxam, and thiacloprid were detected. Maximum concentrations in leaf samples included 10.30 ng/g of clothianidin in 2017, and 24.4 ng/g of thiamethoxam in 2018. Clothianidin and thiamethoxam percent detections in flowers (72 % and 61 %, respectively) were significantly higher than detections in leaves (24 % and 31 %, respectively). Thiamethoxam concentrations were significantly higher in paired flower samples than leaf samples (median 0.33 ng/g vs <0.07 ng/g) while clothianidin concentrations also trended higher in flowers (median 0.18-0.55 ng/g vs <0.18 ng/g). Only thiamethoxam showed significant differences between years, and we found no effect of crop type, with hay, soybean and corn fields all yielding 50-56 % detections in leaves. We found significantly higher concentrations in older milkweed flowers than young flowers or leaves (medians 0.87 ng/g vs <0.18 ng/g and 0.45 ng/g vs <0.07 ng/g for clothianidin and thiamethoxam, respectively). Our results highlight the importance of considering variation in milkweed tissue type and age of flowers in neonicotinoid exposure risk assessments. Efforts to increase milkweed availability in agricultural landscapes should consider how exposure to neonicotinoids can be mitigated.

14.
Comput Biol Chem ; 112: 108176, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181100

RESUMO

Metisa plana is a widespread insect pest infesting oil palm plantations in Malaysia. Farnesyl acetate (FA), a juvenile hormone analogue, has been reported to exert in vitro and in vivo insecticidal activity against other insect pests. However, the insecticidal mechanism of FA on M. plana remains unclear. Therefore, this study aims to elucidate responsive genes in M. plana in response to FA treatment. The RNA-sequencing reads of FA-treated M. plana were de novo-assembled with existing raw reads from non-treated third instar larvae, and 55,807 transcripts were functionally annotated to multiple protein databases. Several insecticide detoxification-related genes were differentially regulated among the 321 differentially expressed transcripts. Cytochrome P450 monooxygenase, carboxylesterase, and ATP-binding cassette protein were upregulated, while peptidoglycan recognition protein was downregulated. Innate immune response genes, such as glutathione S-transferases, acetylcholinesterase, and heat shock protein, were also identified in the transcriptome. The findings signify that changes occurred in the insect's receptor and signaling, metabolic detoxification of insecticides, and immune responses upon FA treatment on M. plana. This valuable information on FA toxicity may be used to formulate more effective biorational insecticides for better M. plana pest management strategies in oil palm plantations.

15.
J Med Entomol ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39182229

RESUMO

The house fly (Musca domestica L.) is a ubiquitous fly species commonly associated with confined animal and urban waste storage facilities. It is known for its pestiferous nature and ability to mechanically vector numerous disease-causing pathogens. Effective control of adult house fly populations has traditionally relied upon insecticidal food baits; however, due to the overuse of insecticides, resistance has proven to yield many insecticidal baits and chemical classes less effective. Imidacloprid, the most widely used neonicotinoid, has been formulated and commonly used in house fly baits for over 2 decades. However, widespread evidence of physiological and behavioral resistance to imidacloprid has been documented. While previous studies have investigated the mechanisms of behavioral resistance to imidacloprid in the house fly, it remains unclear whether behavioral resistance is specific to imidacloprid or if behavioral cross-resistance exists to other compounds within the neonicotinoid class of insecticides. The current study used no-choice and choice-feeding bioassays to examine a lab-selected imidacloprid behaviorally resistant house fly colony for cross-resistance to other insecticides in the neonicotinoid chemical class. All flies exhibited high mortality (97-100%) in no-choice assays, even when exposed to imidacloprid, indicating physiological susceptibility to all tested neonicotinoids. House flies exhibited high mortality (98-100%) in choice assays when exposed to all neonicotinoid insecticides tested besides imidacloprid. These results confirm that imidacloprid behavioral resistance is specific to the compound imidacloprid and that alternative neonicotinoids remain viable options for control. Our study showed no evidence of behavioral cross-resistance to other compounds in the neonicotinoid class.

16.
Ecotoxicol Environ Saf ; 284: 116917, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182280

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (ß-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that ß-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of ß-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to ß-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than ß-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.

17.
Med Vet Entomol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167411

RESUMO

Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.

18.
EFSA J ; 22(8): e8976, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139702

RESUMO

The conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State, The Netherlands for the pesticide active substance Phthorimaea operculella granulovirus are reported. The context of the peer review was that required by Regulation (EC) No 1107/2009 of the European Parliament and of the Council. The conclusions were reached on the basis of the evaluation of the representative uses of Phthorimaea operculella granulovirus as an insecticide on tomato (field and greenhouse uses) and on potato (field use) via spraying (tractor drawn or knapsack sprayers) or overhead irrigation. The reliable endpoints, appropriate for use in regulatory risk assessment are presented. Missing information identified as being required by the regulatory framework is listed.

19.
J Agric Food Chem ; 72(33): 18365-18377, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105749

RESUMO

Host-symbiont interaction plays a crucial role in determining the host's fitness under toxic stress, as observed in numerous insect species. However, the mechanism of the symbionts involved in the detoxification of insecticides remains poorly known. In this study, through microbiome, proteomic, and genomic analysis, we identified a prevalent symbiont, Enterococcus casseliflavus EMBL-3, in a major invasive insect pest,Spodoptera frugiperda. This symbiont enhances the host's insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. Complying with the increase in exposure risk of chlorantraniliprole, the E. casseliflavus isolates of insects' symbionts but not those from mammals or environmental strains showed a significant enrichment of potential chlorantraniliprole degradation genes. EMBL-3 is popular in field population insects with efficient horizontal transmission ability through cross-diet and cannibalism. This study provides a new therapeutic target for agricultural pests based on symbiont-targeted insect control for global crop protection.


Assuntos
Enterococcus , Inseticidas , Spodoptera , Simbiose , ortoaminobenzoatos , Animais , Inseticidas/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Spodoptera/microbiologia , Spodoptera/efeitos dos fármacos , Enterococcus/metabolismo , Enterococcus/genética , Enterococcus/efeitos dos fármacos , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia , Inativação Metabólica , Resistência a Inseticidas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
20.
Trop Med Infect Dis ; 9(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39195622

RESUMO

The growing resistance of Aedes aegypti (L.) to conventional insecticides presents a major challenge in arbovirus control, necessitating the exploration of alternative insecticidal chemistries. Spiromesifen, derived from spirocyclic tetronic acids, is widely used against agricultural pests and is crucial in resistance management due to its unique lipid synthesis inhibition. This study evaluates the insecticidal activity of spiromesifen against temephos-resistant Ae. aegypti populations, focusing on larval body weight, volume, biochemical composition, and adult female reproductive potential. Spiromesifen demonstrated effective larvicidal activity, significantly reducing adult emergence. Resistance to spiromesifen was not observed, with resistance ratios (RR50, RR90) ranging from 0.36- to 3.31-fold. Larvae exposed to LC50 showed significant reductions in body weight and volume, and reduced carbohydrate, lipid, and protein contents. Enhanced catalase activity and malondialdehyde levels indicated increased oxidative stress and lipid peroxidation, highlighting its effects on lipid metabolism. Spiromesifen also exhibited sterilizing effects, significantly reducing fecundity and fertility in adult females, thereby impacting Ae. aegypti reproductive capacity. These findings highlight the potential of spiromesifen as a component of integrated vector management strategies, especially in regions with prevalent insecticide resistance in Ae. aegypti, serving as an effective larvicide and impacting adult reproductive outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...