Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 72: 103091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955053

RESUMO

X-linked microhaplotypes (X-MHs) have the potential to be a valuable supplementary tool in complex kinship identification or the resolution of DNA mixtures, because they bring together the distinctive genetic pattern of X chromosomal markers and the benefits of microhaplotypes (MHs). In this study, we used the 1000 Genome database to screen and select 63 X-MHs; 18 MHs were filtered out though a batch sequencing assessment of the DNA samples collected from 112 unrelated Chinese Han individuals. The resulting 45-plex panel performed well in comprehensive assessments including repeatability, sensitivity, species specificity, resistance to PCR inhibitors or degradation, mutation rate, and accuracy in detecting DNA mixture samples. The minimum amount of DNA template that can be tested with this panel is 0.5 ng. Additionally, the alleles of the minor contributor can be accurately detected when the mixture rate is larger than 1:9 in female-male mixture or 1:19 in male-male mixture. Then, we calculated population parameters on each MH based on the allele frequency data obtained from the sequence results of the aforementioned 112 unrelated samples. Combining these parameters on each MH, it can be calculated that TDPm, TDPf, CPET, CPEDFM, CPEDFF and CNCEP3 of the 45-plex system were 1-8.99×10-13, 1-1.62×10-19, 0.9999999995, 0.9999981, 0.9955, 0.9999971 and 0.99940, respectively, indicating that the panel is capable in personal identification and parentage testing. To reveal the unique advantage of X-MHs in the analyses of complex kinship and male DNA mixture, further assessments were made. For complex kinship identification, 22 types of individual pairs with different second-degree kinship were simulated and different types of likelihood ratios (LR) were calculated for each. The results revealed that the panel can achieve accuracy of approximately 70 %∼80 % when dividing each of the three types of second-degree kinships into three or four groups. Theoretically, such sub-division cannot be done by using independent autosomal markers. For male DNA mixture analysis without suspects, the maximum likelihood ratio strategy was derived and employed in the estimation of the number of male contributors (NOMC). Simulations were conducted to verify the efficacy of the 45-plex panel in the field and to compare it with autosomal markers by assuming the 45 MHs as autosomal ones. The results showed that X-MHs can achieve higher accuracy in the estimation of NOMC than autosomal ones when the mixed males were unrelated. The results highlighted the unique value of X-linked MHs in complex kinship and male mixture analyses.


Assuntos
Cromossomos Humanos X , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Feminino , Análise de Sequência de DNA , Impressões Digitais de DNA/métodos , Reação em Cadeia da Polimerase , Povo Asiático/genética , Polimorfismo de Nucleotídeo Único , China , Genética Populacional
2.
J Korean Med Sci ; 39(27): e198, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39015000

RESUMO

BACKGROUND: Relatives share more genomic regions than unrelated individuals, with closer relatives sharing more regions. This concept, paired with the increased availability of high-throughput single nucleotide polymorphism (SNP) genotyping technologies, has made it feasible to measure the shared chromosomal regions between individuals to assess their level of relation to each other. However, such techniques have remained in the conceptual rather than practical stages in terms of applying measures or indices. Recently, we developed an index called "genetic distance-based index of chromosomal sharing (GD-ICS)" utilizing large-scale SNP data from Korean family samples and demonstrated its potential for practical applications in kinship determination. In the current study, we present validation results from various real cases demonstrating the utility of this method in resolving complex familial relationships where information obtained from traditional short tandem repeats (STRs) or lineage markers is inconclusive. METHODS: We obtained large-scale SNP data through microarray analysis from Korean individuals involving 13 kinship cases and calculated GD-ICS values using the method described in our previous study. Based on the GD-ICS reference constructed for Korean families, each disputed kinship was evaluated and validated using a combination of traditional STRs and lineage markers. RESULTS: The cases comprised those A) that were found to be inconclusive using the traditional approach, B) for which it was difficult to apply traditional testing methods, and C) that were more conclusively resolved using the GD-ICS method. This method has overcome the limitations faced by traditional STRs in kinship testing, particularly in a paternity case with STR mutational events and in confirming distant kinship where the individual of interest is unavailable for testing. It has also been demonstrated to be effective in identifying various relationships without specific presumptions and in confirming a lack of genetic relatedness between individuals. CONCLUSION: This method has been proven effective in identifying familial relationships across diverse complex and practical scenarios. It is not only useful when traditional testing methods fail to provide conclusive results, but it also enhances the resolution of challenging kinship cases, which suggests its applicability in various types of practical casework.


Assuntos
Linhagem , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Cromossomos Humanos/genética , Genótipo , Repetições de Microssatélites/genética , República da Coreia , População do Leste Asiático/genética
3.
Front Genet ; 15: 1401898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903754

RESUMO

Kinship analysis is a crucial aspect of forensic genetics. This study analyzed 1,222 publications on kinship analysis from 1960 to 2023 using bibliometric analysis techniques, investigating the annual publication and citation patterns, most productive countries, organizations, authors and journals, most cited documents and co-occurrence of keywords. The initial publication in this field occurred in 1960. Since 2007, there has been a significant increase in publications, with over 30 published annually except for 2010. China had the most publications (n = 213, 17.43%), followed by the United States (n = 175, 14.32%) and Germany (n = 89, 7.28%). The United States also had the highest citation count. Sichuan University in China has the largest number of published articles. The University of Leipzig and the University of Cologne in Germany exhibit the highest total citation count and average citation, respectively. Budowle B was the most prolific author and Kayser M was the most cited author. In terms of publications, Forensic Science International- Genetics, Forensic Science International, and International Journal of Legal Medicine were the most prolific journals. Among them, Forensic Science International-Genetics boasted the highest h-index, citation count, and average citation rate. The most frequently cited publication was "Van Oven M, 2009, Hum Mutat", with a total of 1,361 citations. The most frequent co-occurrence keyword included "DNA", "Loci", "Paternity testing", "Population", "Markers", and "Identification", with recent interest focusing on "Kinship analysis", "SNP" and "Inference". The current research is centered around microhaplotypes, forensic genetic genealogy, and massively parallel sequencing. The field advanced with new DNA analysis methods, tools, and genetic markers. Collaborative research among nations, organizations, and authors benefits idea exchange, problem-solving efficiency, and high-quality results.

4.
Forensic Sci Int Genet ; 70: 103010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271830

RESUMO

The worldwide implementation of short tandem repeats (STR) profiles in forensic genetics necessitated establishing and expanding the CODIS core loci set to facilitated efficient data management and exchange. Currently, the mainstay CODIS STRs are adopted in most general-purpose forensic kits. However, relying solely on these loci failed to yield satisfactory results for challenging tasks, such as bio-geographical ancestry inference, complex DNA mixture profile interpretation, and distant kinship analysis. In this context, non-CODIS STRs are potent supplements to enhance the systematic discriminating power, particularly when combined with the high-throughput next-generation sequencing (NGS) technique. Nevertheless, comprehensive evaluation on non-CODIS STRs in diverse populations was scarce, hindering their further application in routine caseworks. To address this gap, we investigated genetic variations of 178 historically available non-CODIS STRs from ethnolinguistically different worldwide populations and studied their characteristics and forensic potentials via high-coverage whole genome sequencing (WGS) data. Initially, we delineated the genomic properties of these non-CODIS markers through sequence searching, repeat structure scanning, and manual inspection. Subsequent population genetics analysis suggested that these non-CODIS STRs had comparable polymorphism levels and forensic utility to CODIS STRs. Furthermore, we constructed a theoretical next-generation sequencing (NGS) panel comprising 108 STRs (20 CODIS STRs and 88 non-CODIS STRs), and evaluated its performance in inferring bio-geographical ancestry origins, deconvoluting complex DNA mixtures, and differentiating distant kinships using real and simulated datasets. Our findings demonstrated that incorporating supplementary non-CODIS STRs enabled the extrapolation of multidimensional information from a single STR profile, thereby facilitating the analysis of challenging forensic tasks. In conclusion, this study presents an extensive genomic landscape of forensic non-CODIS STRs among global populations, and emphasized the imperative inclusion of additional polymorphic non-CODIS STRs in future NGS-based forensic systems.


Assuntos
Genética Populacional , Polimorfismo Genético , Humanos , DNA/genética , Genômica , Impressões Digitais de DNA/métodos , Análise de Sequência de DNA/métodos , Repetições de Microssatélites
5.
Electrophoresis ; 44(19-20): 1569-1578, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454302

RESUMO

The need to identify a missing person (MP) through kinship analysis of DNA samples found at a crime scene has become increasingly prevalent. DNA samples from MPs can be severely degraded, contain little DNA and mixed with other contributors, which often makes it difficult to apply conventional methods in practice. This study developed a massively parallel sequencing-based panel that contains 1661 single-nucleotide polymorphisms (SNPs) with low minor allele frequencies (MAFs) (averaged at 0.0613) in the Chinese Han population, and the strategy for relationship inference from DNA mixtures comprising different numbers of contributors (NOCs) and of varying allele dropout probabilities. Based on the simulated dataset and genotyping results of 42 artificial DNA mixtures (NOC = 2-4), it was observed that the present SNP panel was sufficient for balanced mixtures when referenced to the closest relatives (parents/offspring and full siblings). When the mixture profiles suffered from dropout, incorrect assignments were markedly associated with relatedness, NOC and the dropout level. We, therefore, indicate that SNPs with low MAFs could be reliably interpreted for MP identification through the kinship analysis of complex DNA mixtures. Further studies should be extended to more possible scenarios to test the feasibility of this present approach.

6.
Electrophoresis ; 44(17-18): 1435-1445, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501329

RESUMO

Distant genetic relatives can be linked to a crime scene sample by computing identity-by-state (IBS) and identity-by-descent (IBD) shared by individuals. To test the methods of genetic genealogy estimation and optimal the parameters for forensic investigation, a family-based genetic genealogy analysis was performed using a dataset of 262 Han Chinese individuals from 11 families. The dataset covered relative pairs from 1st- to 14th degrees. But the 7th-degree relative is the most distant kinship to be fully investigated, and each individual has ∼200 relatives within the 7th degree. The KING algorithm by calculating IBS and IBD statistics can correctly discriminate the first-degree relationships of monozygotic twin, parent-offspring and full sibling. The inferred relationship was reliable within the fifth-degree, false positive rate <1.8%. The IBD segment algorithm, GERMLINE + ERSA, could provide reliable inference result prolonged to eighth degree. Analysis of IBD segments produced obviously false negative estimations (<27.4%) rather than false positives (0%) within the eighth-degree inferences. We studied different minimum IBD segment threshold settings (changed from >0 to 6 cM); the inferred results did not make much difference. In distant relative analysis, genetically undetectable relationships begin to occur from the sixth degree (second cousin once removed), which means the offspring after seven meiotic divisions may share no ancestor IBD segment at all. Application of KING and GERMLINE + ERSA worked complementarily to ensure accurate inference from first degree to eighth degree. Using simulated low call rate data, the KING algorithm shows better tolerance to marker decrease compared with the GERMLINE + ERSA segment algorithm.


Assuntos
População do Leste Asiático , Genética Forense , Polimorfismo de Nucleotídeo Único , Humanos , Algoritmos , Linhagem
7.
Int J Legal Med ; 137(4): 1007-1015, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127762

RESUMO

In forensic kinship analysis and human identification cases, analysis of STRs is the gold standard. When badly preserved ancient DNA is used for kinship analysis, short identity SNPs are more promising for successful amplification. In this work, kinship analysis was performed on two skeletons from the Early Middle Ages. The surface contaminants of petrous bones were removed by chemical cleaning and UV irradiation; DNA was isolated through full demineralization and purified in an EZ1 Advanced XL machine. The PowerQuant kit was used to analyze DNA yield and degradation, and on average, 17 ng DNA/g of petrous bone was obtained. Both skeletons were typed in duplicate for STR markers using the Investigator EssplexPlus SE QS kit, and comparison of partial consensus genotypes showed shared allelic variants at most loci amplified, indicating close kinship. After statistical calculation, the full-sibling kinship probability was too low for kinship confirmation, and additional analyses were performed with PCR-MPS using the Precision ID Identity Panel. The HID Ion Chef Instrument was used to prepare the libraries and for templating and the Ion GeneStudio S5 System for sequencing. Analysis of identity SNPs produced full genetic profiles from both skeletons. For combined likelihood ratio (LR) calculation, the product rule was used, combining LR for STRs and LR for SNPs, and a combined LR of 3.3 × 107 (corresponding to a full-sibling probability of 99.999997%) was calculated. Through the SNP PCR-MPS that followed the STR analysis, full-sibling kinship between the ancient skeletons excavated from an early medieval grave was confirmed.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , DNA , Esqueleto , Probabilidade , Análise de Sequência de DNA
8.
Forensic Sci Int Genet ; 65: 102887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209601

RESUMO

In recent years, microhaplotypes (MHs) have become a research hotspot within the field of forensic genetics. Traditional MHs contain only SNPs that are closely linked within short fragments. Herein, we broaden the concept of general MHs to include short InDels. Complex kinship identification plays an important role in disaster victim identification and criminal investigations. For distant relatives (e.g., 3rd-degree), many genetic markers are required to enhance power of kinship testing. We performed genome-wide screening for new MH markers composed of two or more variants (InDel or SNP) within 220 bp based on the Chinese Southern Han from the 1000 Genomes Project. An NGS-based 67plex MH panel (Panel B) was successfully developed, and 124 unrelated individual samples were sequenced to obtain population genetic data, including alleles and allele frequencies. Of the 67 genetic markers, 65 MHs were, as far as we know, newly discovered, and 32 MHs had effective number of allele (Ae) values greater than 5.0. The average Ae and heterozygosity of the panel were 5.34 and 0.7352, respectively. Next, 53 MHs from a previous study were collected as Panel A (average Ae of 7.43), and Panel C with 87 MHs (average Ae of 7.02) was formed by combining Panels A and B. We investigated the utility of these three panels in kinship analysis (parent-child, full siblings, 2nd-degree, 3rd-degree, 4th-degree, and 5th-degree relatives), with Panel C exhibiting better performance than the two other panels. Panel C was able to separate parent-child, full-sibling, and 2nd-degree relative duos from unrelated controls in real pedigree data, with a small false testing level (FTL) of 0.11% in simulated 2nd-degree duos. For more distant relationships, the FTL was much higher: 8.99% for 3rd-degree, 35.46% for 4th-degree, and 61.55% for 5th-degree. When a carefully chosen extra relative was known, this may enhance the testing power for distant kinship analysis. Two twins from the Q family (2-5 and 2-7) and W family (3-18 and 3-19) shared the same genotypes in all tested MHs, which led to the incorrect conclusion that an uncle-nephew duo was classified as a parent-child duo. In addition, Panel C showed great capacity for excluding close relatives (2nd-degree and 3rd-degree relatives) during paternity tests. Among 18,246 real and 10,000 simulated unrelated pairs, none were misinterpreted as a relative within 2nd-degree at a log10(LR) cutoff of 4. The panels presented herein could provide supplementary power for the analysis of complex kinship.


Assuntos
Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Marcadores Genéticos , Genótipo , Frequência do Gene , Polimorfismo de Nucleotídeo Único
9.
Forensic Sci Int Genet ; 65: 102885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137205

RESUMO

Since the arrest of the Golden State Killer in the US in April 2018, forensic geneticists have been increasingly interested in the investigative genetic genealogy (IGG) method. While this method has already been in practical use as a powerful tool for criminal investigation, we have yet to know well the limitations and potential risks. In this current study, we performed an evaluation study focusing on degraded DNA using the Affymetrix Genome-Wide Human SNP Array 6.0 platform (Thermo Fisher Scientific). We revealed one of the potential problems that occur during SNP genotype determination using a microarray-based platform. Our analysis results indicated that the SNP profiles derived from degraded DNA contained many false heterozygous SNPs. In addition, it was confirmed that the total amount of probe signal intensity on microarray chips derived from degraded DNA decreased significantly. Because the conventional analysis algorithm performs normalization during genotype determination, we concluded that noise signals could be genotype-called. To address this issue, we proposed a novel microarray data analysis method without normalization (nMAP). Although the nMAP algorithm resulted in a low call rate, it substantially improved genotyping accuracy. Finally, we confirmed the usefulness of the nMAP algorithm for kinship inferences. These findings and the nMAP algorithm will make a contribution to the advance of the IGG method.


Assuntos
DNA , Imunoglobulina G , Humanos , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , DNA/genética , Imunoglobulina G/genética , Polimorfismo de Nucleotídeo Único
10.
Forensic Sci Int Genet ; 65: 102886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137206

RESUMO

The familial relationship between skeletons buried together in a shared grave is important for understanding the burial practices of past human populations. Four skeletons were excavated from the Late Antiquity part of the Bled-Pristava burial site in Slovenia, dated to the 5th to 6th century. They were anthropologically characterized as two adults (a middle-aged man and a young woman) and two non-adults (of unknown sex). Based on stratigraphy, the skeletons were considered to be buried simultaneously in one grave. Our aim was to determine whether the skeletons were related. Petrous bones and teeth were used for genetic analysis. Specific precautions were followed to prevent contamination of ancient DNA with contemporary DNA, and an elimination database was established. Bone powder was obtained using a MillMix tissue homogenizer. Prior to extracting the DNA using Biorobot EZ1, 0.5 g of powder was decalcified. The PowerQuant System was used for quantification, various autosomal kits for autosomal short tandem repeat (STR) typing, and the PowerPlex Y23 kit for Y-STR typing. All analyses were performed in duplicate. Up to 28 ng DNA/g of powder was extracted from the samples analyzed. Almost full autosomal STR profiles obtained from all four skeletons and almost full Y-STR haplotypes obtained from two male skeletons were compared, and the possibility of a familial relationship was evaluated. No amplification was obtained in the negative controls, and no match was found in the elimination database. Autosomal STR statistical calculations confirmed that the adult male was the father of two non-adult individuals and one young adult individual from the grave. The relationship between the males (father and son) was additionally confirmed by an identical Y-STR haplotype that belonged to the E1b1b haplogroup, and a combined likelihood ratio for autosomal and Y-STRs was calculated. Kinship analysis confirmed with high confidence (kinship probability greater than 99.9% was calculated for all three children) that all four skeletons belonged to the same family (a father, two daughters, and a son). Through genetic analysis, the burial of members of the same family in a shared grave was confirmed as a burial practice of the population living in the Bled area in Late Antiquity.


Assuntos
Impressões Digitais de DNA , DNA , Feminino , Criança , Humanos , Masculino , Pessoa de Meia-Idade , Pós , DNA/genética , Osso e Ossos , Repetições de Microssatélites , Cromossomos Humanos Y , Povos Indígenas , Haplótipos
11.
Electrophoresis ; 44(13-14): 1080-1087, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37016479

RESUMO

Y chromosome Short Tandem Repeat (STR) haplotypes have been used in assisting forensic investigations primarily for identification and male lineage determination. The current SWGDAM interpretation guidelines for Y-STR typing provide helpful guidance on those purposes but do not address the issue of kinship analysis with Y-STR haplotypes. Because of the high mutation rate of Y-STRs, there are complex missing person cases in which inconsistent Y-STR haplotypes between true paternal lineage relatives will arise and cases with two or more male references in the same lineage and yet differ in their haplotypes. Therefore, more useful methods are needed for interpreting the Y-STR haplotype data. Computational methods and interpretation guidelines have been developed specifically addressing this issue, either using a mismatch-based counting method or a pedigree likelihood ratio method. In this study, a software program, MPKin-YSTR, was developed by implementing those more sophisticated methods. This software should be able to improve the interpretation of complex cases with Y-STR haplotype evidence. Thus, more biological evidence will be interpreted, which in turn will result in more investigation leads to help solve crimes.


Assuntos
Cromossomos Humanos Y , Repetições de Microssatélites , Humanos , Masculino , Haplótipos/genética , Cromossomos Humanos Y/genética , Repetições de Microssatélites/genética , Linhagem , Genética Populacional
12.
Forensic Sci Int Genet ; 65: 102855, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36947934

RESUMO

Distant kinship identification is one of the critical problems in forensic genetics. As a new type of genetic marker defined and discussed in the last decade, the microhaplotype (MH) has drawn much attention in such identification owing to its specific advantages to traditional short tandem repeat (STR) or single nucleotide polymorphism (SNP) markers. In this study, MH markers were screened step by step from the 1000 Genomes Project database, and a novel multiplex panel containing 188 MHs (in which 181 are reported the first time, while 1 was reported in a previous study and the other 6 have partial overlaps with known markers) was constructed for application in 2nd- and 3rd-degree kinship identification. Along with the construction, a novel MH nomenclature was proposed, in which the SNP position information they contained was taken into account to eliminate the possibility that the same locus was named differently interlaboratory. After a series of evaluations, the panel was shown to have good sequencing accuracy, high sensitivity, species specificity, and resistance to anti-PCR inhibitors or degradation. Population data of the 188 MHs were calculated based on the genetic information of 221 unrelated Hebei Han individuals, and the effective number of alleles (Ae) ranged from 2.0925 to 8.2634 (with an average of 2.9267). For the whole system, the cumulative matching probability (CMP), the cumulative power of exclusion in paternity testing of duos (CPEduo) and that of trios (CPEtrio) reached 2.8422 × 10-137, 1-1.3109 × 10-21, and 1-2.8975 × 10-39, respectively, indicating that this panel was satisfactory for individual identification and paternity testing. Then, the efficiency of the 188 MHs in 2nd- and 3rd-degree kinship testing was studied based on 30 extended families consisting of 179 2nd-degree and 121 3rd-degree relatives, as well as simulations of 0.5 million pairs of those two kinships. The results showed that clear opinions would be given in 83.36% of 2nd-degree identifications with a false rate less than 10-5, when the confirming and excluding thresholds of cumulative likelihood ratio (CLR) were set as 104 and 10-4, respectively. This panel is still not sufficient to solve the problem of 3rd-degree kinship identification alone, and approximately 300 or 870 MH loci would be needed in 2nd- or 3rd-degree kinship identification, respectively, to achieve a system efficiency not less than 0.99 with such a threshold set; such necessary numbers would be used only as a reference in further research.


Assuntos
Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Genótipo , Impressões Digitais de DNA/métodos , Polimorfismo de Nucleotídeo Único , Paternidade , Repetições de Microssatélites , Genética Forense/métodos , Frequência do Gene
13.
Hereditas ; 160(1): 14, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978173

RESUMO

BACKGROUND: Dongxiang group, as an important minority, resides in Gansu province which is located at the northwest China, forensic detection system with more loci needed to be studied to improve the application efficiency of forensic case investigation in this group. METHODS: A 60-plex system including 57 autosomal deletion/insertion polymorphisms (A-DIPs), 2 Y chromosome DIPs (Y-DIPs) and the sex determination locus (Amelogenin) was explored to evaluate the forensic application efficiencies of individual discrimination, kinship analysis and biogeographic origin prediction in Gansu Dongxiang group based on the 60-plex genotype results of 233 unrelated Dongxiang individuals. The 60-plex genotype results of 4582 unrelated individuals from 33 reference populations in five different continents were also collected to analyze the genetic background of Dongxiang group and its genetic relationships with other continental populations. RESULTS: The system showed high individual discrimination power, as the cumulative power of discrimination (CPD), cumulative power of exclusion (CPE) for trio and cumulative match probability (CMP) values were 0.99999999999999999999997297, 0.999980 and 2.7029E- 24, respectively. The system could distinguish 98.12%, 93.78%, 82.18%, 62.35% and 39.32% of full sibling pairs from unrelated individual pairs, when the likelihood ratio (LR) limits were set as 1, 10, 100, 1000 and 10,000 based on the simulated family samples, respectively. Additionally, Dongxiang group had the close genetic distances with populations in East Asia, especially showed the intimate genetic relationships with Chinese Han populations, which were concluded from the genetic affinities and genetic background analyses of Dongxiang group and 33 reference populations. In terms of the effectiveness of biogeographic origin inference, different artificial intelligent algorithms possessed different efficacies. Among them, the random forest (RF) and extreme gradient boosting (XGBoost) algorithm models could accurately predict the biogeographic origins of 99.7% and 90.59% of three and five continental individuals, respectively. CONCLUSION: This 60-plex system had good performance for individual discrimination, kinship analysis and biogeographic origin prediction in Dongxiang group, which could be used as a powerful tool for case investigation.


Assuntos
População do Leste Asiático , Genética Populacional , Humanos , China , População do Leste Asiático/genética , Frequência do Gene , Repetições de Microssatélites , Polimorfismo Genético , Grupos Minoritários
14.
Forensic Sci Int ; 342: 111541, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565683

RESUMO

Kinship testing using genetic markers such as short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) is crucial for forensic analysis. Although STR markers have superior discriminatory power due to their highly polymorphic properties, they have several weak points in determining extended distant or complex relationships because of high mutation rates and low success rates in degraded samples. Therefore, SNPs are regarded as promising tools in forensic science because they have low mutation rates and small amplicon sizes. Herein, we propose an SNP panel consisting of 1400 autosomal SNPs obtained from the Korean National Standard Reference Variome (KoVariome) database. To evaluate its performance, in-silico analysis was performed using whole-genome sequencing (WGS) data from 21 Korean families. Subsequently, to estimate pairwise relatedness, kinship coefficients were calculated using PLINK, and Welch's one-way ANOVA test with Games-Howell's pairwise comparison test was performed. As a result, the average kinship coefficients of first- (parent-offspring and full siblings), second- (grandparent-grandchildren and aunt/uncle-niece/nephew), and third- (first cousin and grandniece/grandnephew) degree relatives, and unrelated were 0.24, 0.11, - 0.054, and - 0.0082, respectively. Consequently, relatives (first and second degree) were distinguished from non-relatives; however, further studies are required to investigate more effective SNP markers for discriminating extended kinship. Nevertheless, the results of this study go beyond the scope of screening using the discovered 1400 SNPs in Korean families and suggest the applicability of kinship analysis in the Korean population.


Assuntos
Povo Asiático , Polimorfismo de Nucleotídeo Único , Humanos , Linhagem , Povo Asiático/genética , Repetições de Microssatélites , República da Coreia , Impressões Digitais de DNA/métodos
15.
Leg Med (Tokyo) ; 60: 102158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308842

RESUMO

High-density single nucleotide polymorphisms (SNPs) can detect distant relatives even in the context of pairwise kinship analysis. Although DNA microarrays conveniently generate genome-wide SNP data, they require large quantities of high-quality DNA. Genotyping data obtained from low-quantity and low-quality samples are likely unreliable owing to the incidence of no-called or mistyped SNPs. In this study, we examined the effects of insufficient sample densities and sample degradation on the efficacy of kinship analysis. While low DNA amounts had a minor effect, DNA degradation led to a significant increase in no-call rates and error rates. Posterior probabilities of kinship determination, calculated using the index of chromosomal sharing, were markedly lower in proportion to the no-call rates and error rates. We also investigated the effect of genotype imputation to complement the no-called genome data utilizing SNPs reference panels. We found that the posterior probability of the relative-assumed person increased with genotype complementation in case of mild degradation, even with mistyped genotypes. Therefore, DNA microarray with imputation is a promising method for analyzing forensic DNA samples taken from situations where DNA quantity and quality may be compromised, such as disaster victim identification using pairwise kinship analysis.


Assuntos
Cromossomos , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , DNA/genética
16.
Biomed J ; 46(4): 100549, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35863666

RESUMO

BACKGROUND: Family disease history plays a vital role in type 2 diabetes mellitus (T2DM) risk. However, the familial aggregation of T2DM among different kinship relatives warrants further investigation. METHODS: This nationwide kinship relationship study collected 2000-2016 data of two to five generations of the Taiwanese population from the National Health Insurance Research Database. Approximately 4 million family trees were constructed from the records of 20, 890, 264 Taiwanese residents during the study period. T2DM was diagnosed on the basis of ICD-9-CM codes 250.x0 or 250.x2, with three consecutive related prescriptions. The Cox proportional hazard model was used for statistical analysis. RESULTS: Compared with their counterparts, individuals who had first-degree relatives with T2DM were more likely to develop T2DM during the follow-up period (hazard ratio [HR], 2.37-27.75), followed by individuals who had second-degree relatives with T2DM (HR, 1.29-1.88). T2DM relative risk was higher in those with an affected mother than in those with affected father. The HR for T2DM was 20.32 (95%CI = 15.64-26.42) among male individuals with an affected twin brother, whereas among female individuals with an affected twin sister, it was 60.07 (95%CI = 40.83-88.36). The HRs presented a dose-response relationship with the number of affected family members. CONCLUSION: The study suggests a significant familial aggregation of T2DM occurrence; these findings could aid in identifying the high-risk group for T2DM and designing early intervention strategies and treatment plans.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/genética , Taiwan , Humanos , Família , Linhagem , Masculino , Feminino , Fatores Sexuais , Fatores Etários , Risco , Interação Gene-Ambiente , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
17.
Front Genet ; 13: 986724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110208

RESUMO

Genetic makeup of insect pest is informative for source-sink dynamics, spreading of insecticide resistant genes, and effective management. However, collecting samples from field populations without considering temporal resolution and calculating parameters related to historical gene flow may not capture contemporary genetic pattern and metapopulation dynamics of highly dispersive pests. Plutella xylostella (L.), the most widely distributed Lepidopteran pest that developed resistance to almost all current insecticides, migrates heterogeneously across space and time. To investigate its real-time genetic pattern and dynamics, we executed four samplings over two consecutive years across Southern China and Southeast Asia, and constructed population network based on contemporary gene flow. Across 48 populations, genetic structure analysis identified two differentiated insect swarms, of which the one with higher genetic variation was replaced by the other over time. We further inferred gene flow by estimation of kinship relationship and constructed migration network in each sampling time. Interestingly, we found mean migration distance at around 1,000 km. Such distance might have contributed to the formation of step-stone migration and migration circuit over large geographical scale. Probing network clustering across sampling times, we found a dynamic P. xylostella metapopulation with more active migration in spring than in winter, and identified a consistent pattern that some regions are sources (e.g., Yunnan in China, Myanmar and Vietnam) while several others are sinks (e.g., Guangdong and Fujian in China) over 2 years. Rapid turnover of insect swarms and highly dynamic metapopulation highlight the importance of temporal sampling and network analysis in investigation of source-sink relationships and thus effective pest management of P. xylostella, and other highly dispersive insect pests.

18.
Forensic Sci Int Genet ; 60: 102741, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780597

RESUMO

Complex kinship analysis is a critical issue in forensic genetics. To address this issue, 55 STRs and 94 SNPs collected from four commercial forensic typing kits [three kits were based on a capillary electrophoresis (CE) platform and one was based on a next-generation sequencing (NGS) platform] were employed to test the system power for 2nd-degree and 3rd-degree kinship analysis. To measure the kinship index in related individuals, likelihood ratios (LRs) were calculated based on length and sequence polymorphism information (LRlength and LRsequence, respectively) from simulation as well as true pedigree samples. LRs calculated based on sequence information are generally higher than those based on length information. The sensitivity, specificity, and effectiveness to distinguish the 2nd- and 3rd-degree kinship were estimated from four marker sets with different numbers of markers. As expected, system power for kinship analysis improved by increasing the number of markers and using LRsequence, instead of LRlength. Furthermore, the system power based on 55 STRs from the CE platform is equal to the 40 STRs and 94 SNPs from one CE kit and the kit based on NGS platform for both 2nd-degree and 3rd-degree kinship analysis. For discrimination of 2nd-degree kinship, the system effectiveness is 86.63% with an error ratio < 0.01 using the 55 STRs from the CE platform. Using sequence information from the 55 STRs and 94 SNPs, the system effectiveness is 94.43%, with an error ratio < 0.001 for 2nd-degree kinship analysis and 64.34% with an error ratio < 0.05 for 3rd-degree kinship analysis, indicating that these markers are powerful for 2nd-degree kinship analysis and can be used for 3rd-degree kinship analysis.


Assuntos
Família , Genética Forense , Hereditariedade , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
Forensic Sci Int Synerg ; 4: 100226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402888

RESUMO

DNA databases effectively develop investigative leads, with database size being directly proportional to increased chances of solving crimes as demonstrated by a business case including a universal STR database example. DNA database size can be expanded physically by increasing the number and type of qualifying offenses, adding arrestees, or moving towards a universal database. The theoretical size of a DNA database can also be increased scientifically by using the inherent nature of DNA sharing by biologically related individuals by using an indirect matching strategy including Partial Matching, Familial Searching, and Investigative Genetic Genealogy (IGG). A new strategy is introduced using areas of shared DNA as a search key to locate potential relatives for further kinship evaluation. New search key strategies include Y-STR, mtDNA, and X Chromosome searching to locate potential relatives, coupled with kinship and genetic genealogical research, as well as expanded use of unidentified human remains (UHRs).

20.
Forensic Sci Int Genet ; 58: 102689, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316721

RESUMO

In forensic applications, there is an increasing demand for the analysis of DNA profiles arising from missing person identification (MPI) cases. A specific DNA profile may originate from a single source or more than one contributor (i.e., a DNA mixture). When direct references are not available, indirect relative references can be used to identify missing persons by kinship analysis. As a novel kind of multiallelic marker, microhaplotypes have proven promising for relatedness determination and mixture deconvolution. Herein, we developed a large panel of 185 microhaplotype markers and demonstrated its application in different scenarios of relationship inference through a simulation study and real pedigree analysis, combined with probabilistic genotyping models for data interpretation. Based on single-source profiles, it was shown that the present microhaplotype panel was sufficient for pairwise close relative testing (parent/child, full-sibling and 2nd-degree relative). For more distant relatives (3rd-degree relatives), there was a clear improvement when data from one well-chosen extra relative were available. We further sought to evaluate the theoretical systematic effectiveness and actual performance of microhaplotype markers in identifying the contribution of a missing pedigree member to a two-person mixture (as a minor donor). It was observed that 100% correct assignments were made in the balanced mixtures (with no dropout) when referenced to close relatives. When the mixture profiles suffered from dropout, incorrect assignments of minor donors were markedly associated with relatedness and the dropout level. Meanwhile, the studied scenarios generally exhibited zero or very low false-positive rates, indicating a low probability of incorrectly assigning an unrelated contributor as a close relative of the reference. Our results indicate that microhaplotype data can be reliably interpreted for identifying missing persons through kinship analysis based on DNA profiles of single-source samples or two-person mixtures. Furthermore, this study could be extended to more complex scenarios, such as determining the relatedness of contributors in (or among) mixed DNA profiles, if combined with different statistical frameworks.


Assuntos
Impressões Digitais de DNA , DNA , Criança , DNA/análise , DNA/genética , Impressões Digitais de DNA/métodos , Humanos , Modelos Estatísticos , Linhagem , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...