Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1029436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762172

RESUMO

Iron (Fe) and zinc (Zn) deficiency has been identified as a major food-related health issue, affecting two billion people globally. Efforts to enhance the Fe and Zn content in food grains through plant breeding are an economic and sustainable solution to combat micronutrient deficiency in resource-poor populace of Asia and Africa. Pearl millet, Cenchrus americanus (L). Morrone, considered as a hardy nutri-cereal, is the major food crop for millions of people of these nations. As an effort to enhance its grain mineral content, an investigation was conducted using line × tester analysis to generate information on the extent of heterosis, gene action, combining ability for grain yield potential, and grain mineral nutrients (Fe and Zn). The partitioning of variance attributable to parents indicated that the lines and testers differed significantly for the traits studied. For most of the attributes, hybrids that were superior to the parents in the desired direction in terms of per se performance were identified. The analysis of combining ability variance indicated the preponderance of both additive and non-additive genetic effects. Thus, reciprocal recurrent selection can be used to develop a population with high-grain Fe and Zn contents. The Fe and Zn content in grain exhibited a highly significant and positive association between them, whereas the Fe and Zn contents individually showed a negative, albeit weak, correlation with grain yield and a moderate positive relation with grain weight. This indicates that mineral nutrient contents in grains can be improved without significant compromise on yield. The consistency of these trends across the environment suggests that these findings could be directly used as guiding principles for the genetic enhancement of Fe and Zn grain content in pearl millet.

2.
BMC Genomics ; 19(1): 776, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373509

RESUMO

BACKGROUND: Heterosis, a multigenic complex trait extrapolated as sum total of many phenotypic features, is widely utilized phenomenon in agricultural crops for about a century. It is mainly focused on establishing vigorous cultivars with the fact that its deployment in crops necessitates the perspective of genomic impressions on prior selection for metric traits. In spite of extensive investigations, the actual mysterious genetic basis of heterosis is yet to unravel. Contemporary crop breeding is aimed at enhanced crop production overcoming former achievements. Leading cotton improvement programs remained handicapped to attain significant accomplishments. RESULTS: In mentioned context, a comprehensive project was designed involving a large collection of cotton accessions including 284 lines, 5 testers along with their respective F1 hybrids derived from Line × Tester mating design were evaluated under 10 diverse environments. Heterosis, GCA and SCA were estimated from morphological and fiber quality traits by L × T analysis. For the exploration of elite marker alleles related to heterosis and to provide the material carrying such multiple alleles the mentioned three dependent variables along with trait phenotype values were executed for association study aided by microsatellites in mixed linear model based on population structure and linkage disequilibrium analysis. Highly significant 46 microsatellites were discovered in association with the fiber and yield related traits under study. It was observed that two-thirds of the highly significant associated microsatellites related to fiber quality were distributed on D sub-genome, including some with pleiotropic effect. Newly discovered 32 hQTLs related to fiber quality traits are one of prominent findings from current study. A set of 96 exclusively favorable alleles were discovered and C tester (A971Bt) posited a major contributor of these alleles primarily associated with fiber quality. CONCLUSIONS: Hence, to uncover hidden facts lying within heterosis phenomenon, discovery of additional hQTLs is required to improve fibre quality. To grab prominent improvement in influenced fiber quality and yield traits, we suggest the A971 Bt cotton cultivar as fundamental element in advance breeding programs as a parent of choice.


Assuntos
Heterogeneidade Genética , Gossypium/genética , Vigor Híbrido , Estudos de Associação Genética , Genótipo , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...