Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Front Vet Sci ; 11: 1436807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091388

RESUMO

Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.

2.
Front Microbiol ; 15: 1400529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021625

RESUMO

To exert their beneficial effects, microorganisms used in live bacteria-containing products must be viable and present in certain amounts. In this study, we developed a viability assay based on quantitative PCR coupled with propidium monoazide for the identification and enumeration of viable Lactobacillus acidophilus and Bifidobacterium bifidum. In order to optimize the protocol, the thermal inactivation conditions for the two target microorganisms and the PMA concentration inhibiting DNA amplification from the dead cells while allowing it from the live cells were first determined. The viability-PCR protocol was then applied to analyze a commercial product containing the two microorganisms. The quantities of both microorganisms determined using viability-PCR in the tested product were significantly higher than those obtained using the standard plate count, suggesting the presence of bacteria in a viable but non-culturable physiological state. Moreover, lower amounts of the two microorganisms were detected using viability-PCR compared to those achieved using quantitative PCR, possibly because of the presence of dead cells in the samples. Our results suggest that the viability-PCR method proposed here is a suitable alternative for rapid and accurate quantification and assessment of the viability of L. acidophilus and B. bifidum and could be easily adopted in the quality control screening of live bacteria-containing products.

3.
Front Immunol ; 15: 1348010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081324

RESUMO

Background: Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. Methods: The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. Results and Conclusion: Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.


Assuntos
Mucosa Intestinal , Lactobacillus acidophilus , NF-kappa B , Fosfatidilinositol 3-Quinases , Probióticos , Junções Íntimas , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa , Lactobacillus acidophilus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Junções Íntimas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Probióticos/farmacologia , Receptor 2 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Camundongos , Permeabilidade , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo
4.
Vaccines (Basel) ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066339

RESUMO

The development of mucosal vaccines has been limited and could be aided by a systems vaccinology approach to identify platforms and adjuvant strategies that induce protective immune responses. The induction of local immune responses by mucosal-delivered vaccines has been difficult to evaluate from peripheral samples, as systemic responses often do not correlate with the mucosal response. Here, we utilized transcriptomics in combination with Gene Set Enrichment Analysis (GSEA) to assess innate immune activation by an oral probiotic Lactobacillus acidophilus-based vaccine platform in mice. The goal was to explore the earliest immune responses elicited after oral immunization at the Peyer's patch. Twenty-four hours after oral delivery of the L. acidophilus vaccine platform, we found an abundance of L. acidophilus at Peyer's patches and detected expression of the vaccine viral proteins and adjuvants, confirming in vivo vaccine delivery. Compared to mice orally dosed with buffer or wild-type L. acidophilus, we identified enhanced responses in immune pathways related to cytokine and gene signaling, T and B cell activation, phagocytosis, and humoral responses. While more work is needed to correlate these pathways with protection from infection and/or disease, they indicate this method's potential to evaluate and aid in the iterative development of next-generation mucosal vaccines.

5.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873977

RESUMO

BACKGROUND: Soybean meal (SBM) is used widely in animal feed but it contains anti-nutritional factors (ANFs) such as protease inhibitors - immunogenic proteins that limit its utilization. Fermentative processes could help to reduce these ANFs. The aim of this study was to evaluate the nutritional attributes, bacterial community dynamics, and microbial metagenomic profile during the solid-state fermentation of SBM using a strain of the bacterium Lactobacillus acidophilus with or without pre-autoclaving treatment. RESULTS: Following fermentation, there was a reduction in the pH and a concurrent increase in the population of lactic acid bacteria. Fermentation also resulted in an increase in both crude and soluble protein levels. Trypsin inhibitor levels decreased after fermentation, particularly in fermented SBM that had not been pre-autoclaved, with an inactivation rate higher than 90%. Moreover, high-molecular-weight peptides (44-158 kDa), specifically some polypeptides from the soybean immunogen glycinin and ß-conglycinin, underwent degradation during the fermentation process. Bacterial community analysis revealed the dominance of the Lactobacillus genus in all samples, regardless of the treatments applied. Metagenomic profiling identified L. acidophilus as the dominant species in inoculated SBM, irrespective of whether pre-autoclaving was conducted or not. CONCLUSION: This study demonstrates the feasibility of solid-state fermentation with L. acidophilus under non-sterile conditions to inactivate trypsin inhibitor and increase protein concentration and hydrolysate immunogen proteins into low-molecular-weight peptides in SBM. Lactobacillus acidophilus inoculum also inhibited the growth of undesirable bacteria. This knowledge contributes to our understanding of the potential applications of solid-state fermentation with L. acidophilus in improving the nutritional quality of SBM. © 2024 Society of Chemical Industry.

6.
Front Microbiol ; 15: 1416235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860222

RESUMO

Our previous studies have revealed that L. acidophilus possesses inhibitory effects on PCV2 proliferation in vivo, although the underlying mechanisms remain elusive. Probiotics like L. acidophilus are known to exert antiviral through their metabolites. Therefore, in this study, non-targeted metabolomics was used to detect the changes in metabolites of L. acidophilus after 24 h of proliferation. Subsequently, high-throughput molecular docking was utilized to analyze the docking scores of these metabolites with PCV2 Cap and Rep, aiming to identify compounds with potential anti-PCV2 effects. The results demonstrated that 128 compounds such as Dl-lactate were significantly increased. The results of high-throughput molecular docking indicated that compounds such as ergocristine, and telmisartan formed complexes with Cap and Rep, suggesting their potential anti-PCV2 properties. Furthermore, compounds like vitamin C, exhibit pharmacological effects consistent with L. acidophilus adding credence to the idea that L. acidophilus may exert pharmacological effects through its metabolites. These results will provide a foundation for the study of L. acidophilus.

7.
J Food Sci Technol ; 61(7): 1272-1282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910933

RESUMO

Amorphophallus muelleri BI was included in the Araceae family, which is a type of tuber. It is a tuber with high potential due to its abundant bioactive compounds. Amorphophallus muelleri BI flour (AF) contains a high glucomannan and carbon compounds that serve as nutrients for probiotic bacteria. Although Amorphophallus muelleri BI thrives in Indonesia, its utilization rate in the country remains relatively low and haven't been any studies conducted regarding synbiotic powder from AF. The primary objective of this research is to develop a synergistic beverage enriched with varying concentrations of Amorphophallus muelleri BI as a prebiotic and LA as probiotic (synbiotic). The process starts with culture preparation, synbiotic drink process, synbiotic and microencapsulation, includes the examination of solubility, proximate analysis, calorie content, viability, and shelf life. Results showed that the proximate and solubility had no significant effect. Synbiotic drink powder from AF can be produced using spray dry technology. The highest LA growth was observed when augmenting the AF quantity at a 0.4% concentration, which can be seen from the viability parameter with a value of 7.29 log CFU/g. Samples shelf life at -21 and 3 °C with LA viability critical parameter was determined to be 4 days.

8.
mSystems ; 9(7): e0048424, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934644

RESUMO

Corynebacterium pseudotuberculosis (C. p), a facultative intracellular bacterium, is an important zoonotic pathogen that causes abscesses and pyogenic granulomas. The relationship between gut microbiota and host health or diseases has received increasing attention. However, the role of gut microbiota in the process of C. p infection is still unclear. In this study, we established a C. p infection model in C57BL/6 mice and examined the impact of preemptive oral administration Lactobacillus acidophilus (L. acidophilus) on infection. Our findings revealed that C. p infection led to pronounced pathological alterations in the liver and kidneys, characterized by abscess formation, intense inflammatory responses, and bacterial overload. Remarkably, these deleterious effects were greatly relieved by oral administration of L. acidophilus before infection with C. p. Additionally, we further found that during C. p infection, peritoneal macrophages (PMs) of mice orally administered with L. acidophilus accumulated more rapidly at sites of infection. Furthermore, our results showed that PMs from mice with oral L. acidophilus administration showed a stronger C. p clearance effect, and this was mediated by high expression of LC3-II protein. Meanwhile, oral administration of L. acidophilus protected the gut microbiota disorder in C57BL/6 mice caused by C. p infection. In summary, our study demonstrates that oral administration of L. acidophilus confers effective protection against C. p infection in C57BL/6 mice by modulating macrophage autophagy, thereby augmenting bacterial clearance and preserving gut microbiota and function stability. These findings position L. acidophilus as a viable probiotic candidate for the clinical prevention of C. p infection. IMPORTANCE: Corynebacterium pseudotuberculosis (C. p) is known to induce a range of chronic diseases in both animals and humans. Currently, clinical treatment for C. p infection mainly relies on antibiotic therapy or surgical intervention. However, excessive use of antibiotics may increase the risk of drug-resistant strains, and the effectiveness of treatment remains unsatisfactory. Furthermore, surgical procedures do not completely eradicate pathogens and can easily cause environmental pollution. Probiotic interventions are receiving increasing attention for improving the body's immune system and maintaining health. In this study, we established a C. p infection model in C57BL/6 mice to explore the impact of Lactobacillus acidophilus during C. p infection. Our results showed that L. acidophilus effectively protected against C. p infection by regulating the autophagy of macrophages and maintaining intestinal microbiota homeostasis. This study may provide a new strategy for the prevention of C. p infection.


Assuntos
Autofagia , Infecções por Corynebacterium , Corynebacterium pseudotuberculosis , Microbioma Gastrointestinal , Lactobacillus acidophilus , Camundongos Endogâmicos C57BL , Animais , Autofagia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Lactobacillus acidophilus/fisiologia , Camundongos , Infecções por Corynebacterium/prevenção & controle , Infecções por Corynebacterium/microbiologia , Homeostase/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/farmacologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças
9.
Microorganisms ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930631

RESUMO

This study evaluates the suitability of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Apilactobacillus kunkeei-for use as probiotics in apiculture. Given the decline in bee populations due to pathogens and environmental stressors, sustainable alternatives to conventional treatments are necessary. This study aimed to assess the potential of these LAB strains in a probiotic formulation for bees through various in vitro tests, including co-culture interactions, biofilm formation, auto-aggregation, antioxidant activity, antimicrobial activity, antibiotic susceptibility, and resistance to high osmotic concentrations. This study aimed to assess both the individual effects of the strains and their combined effects, referred to as the LAB mix. Results indicated no mutual antagonistic activity among the LAB strains, demonstrating their compatibility with multi-strain probiotic formulations. The LAB strains showed significant survival rates under high osmotic stress and simulated gastrointestinal conditions. The LAB mix displayed enhanced biofilm formation, antioxidant activity, and antimicrobial efficacy against different bacterial strains. These findings suggest that a probiotic formulation containing these LAB strains could be used for a probiotic formulation, offering a promising approach to mitigating the negative effects of pathogens. Future research should focus on in vivo studies to validate the efficacy of these probiotic bacteria in improving bee health.

10.
Braz J Microbiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789905

RESUMO

This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.

11.
J Microbiol Biotechnol ; 34(5): 1073-1081, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38719777

RESUMO

Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Lactobacillus acidophilus , Obesidade , PPAR gama , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , PPAR gama/metabolismo , PPAR gama/genética , Animais , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Probióticos/farmacologia , Triglicerídeos/metabolismo
12.
Int J Biol Macromol ; 272(Pt 1): 132709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815943

RESUMO

Bacterial Metabolite through a fermentation process is a growing trend and a promising alternative for use as functional components. Non-hydrothermal water-soluble (WSPs) and hydrothermally treated water-insoluble (WIPs) Maitake polysaccharides were fermented with Lactobacillus acidophilus (LA) and Lactobacillus plantarum (LP). Chemical composition analysis indicated that Maitake polysaccharides contained 58.22 ± 1.35 % total sugar and 31.46 % ß-glucan, essential for metabolites production. 6-glucanase was used to degrade the WIPs, and hydrothermally treated WIP fibers exhibited smooth microstructure. Hence, the LA and LP bacteria investigated the potential fermented metabolic activities and differences between WSPs(Sp1)and WIP(Sp3) Maitake polysaccharides using LC-MS, and 887 metabolites were identified. Using Venn, Partial least squares discriminant analysis (PLS-DA), VIP Metabolites, and other multivariate statistical analysis methods, metabolites were expressed differently in all samples. Due to hydrothermal processing, WIP induced the highest growth of LA and LP, with an abundance of isocitrate metabolites. Furthermore, 50 metabolite correlations were identified, leading to the classification of 6 distinct metabolic groups. Thus, the study offers the initial comprehensive analysis of metabolites in Lactobacillus-fermented Maitake polysaccharides, aiding in understanding its metabolic interactions and facilitating progress in food engineering research.


Assuntos
Fermentação , Lactobacillus acidophilus , Lactobacillus plantarum , Polissacarídeos , Solubilidade , Água , Lactobacillus plantarum/metabolismo , Lactobacillus acidophilus/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Água/química , Metabolômica/métodos , Metaboloma , Cogumelos Shiitake/metabolismo , Cogumelos Shiitake/química
13.
Eur Arch Paediatr Dent ; 25(3): 443-450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724869

RESUMO

PURPOSE: This study aimed to evaluate the antibacterial and cytotoxic effects of reinforced zinc oxide-eugenol (rZOE) incorporated with different concentrations of silver nanoparticles (AgNPs). METHODS: The pastes of rZOE alone or mixed with AgNPs at concentrations of 1%, 2%, and 5% of weight were prepared. In vitro antimicrobial activity of prepared materials against Streptococcus (S.) mutans and Lactobacillus (L.) acidophilus were evaluated after 2, 4, and 6 h of contact times using direct contact test (DCT) and also following 24 h incubation by well-diffusion test (WDT). The cytotoxicity of the tested materials on human dental pulp stem cells was also determined by MTT assay. RESULTS: The DCT demonstrated that the time-dependent reductions of the colony numbers of both bacteria by three different concentrations of AgNPs incorporated into rZOE were equal but steeper than the rZOE alone (P < 0.05). The increases in growth inhibition zones of S. mutans and L. acidophilus were associated with the increasing concentration of AgNPs mixed with rZOE in the WDT; however, statistical analysis did not show any significant differences (P = 0.092). The MTT assay revealed a significantly lower percentage of cell viability after 1 day of culture only with the rZOE + AgNP5% in comparison to the rZOE alone (P = 0.011) and the control medium (P = 0.001). CONCLUSION: Since the antimicrobial activities of three different concentrations of AgNPs incorporated into rZOE were equal and AgNPs had lower toxicity at lower concentrations, using AgNPs at 1% concentration is suggested to be mixed with rZOE.


Assuntos
Lactobacillus acidophilus , Nanopartículas Metálicas , Prata , Streptococcus mutans , Prata/farmacologia , Humanos , Nanopartículas Metálicas/toxicidade , Streptococcus mutans/efeitos dos fármacos , Lactobacillus acidophilus/efeitos dos fármacos , Cimento de Óxido de Zinco e Eugenol/farmacologia , Cimento de Óxido de Zinco e Eugenol/toxicidade , Técnicas In Vitro , Anti-Infecciosos/farmacologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Teste de Materiais
14.
Food Sci Nutr ; 12(5): 3653-3662, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726396

RESUMO

The aim of this study was to investigate the characteristics of yogurt prepared with the addition of Persian shallot and probiotic bacteria. The effect of Persian shallot on the viability of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium bifidum) was evaluated. Furthermore, the antimicrobial effects of shallot and probiotic bacteria on Listeria monocytogenes and Escherichia coli species were investigated. The experiments were performed on days 0, 1, 7, 14, and 21. The results showed that the survival of lactic acid bacteria increased significantly in the presence of shallots (p < .05). The addition of two different probiotic bacteria to the yogurt samples inhibited the pathogenic bacteria. While E. coli bacteria had a 3-log reduction, L. monocytogenes did not grow at all in the presence of probiotic bacteria and shallots. Based on these experiments, it was concluded that the addition of shallots not only increased the survival of probiotic bacteria but also reduced the growth of food-borne pathogenic bacteria. In addition, the addition of probiotic bacteria increased the acceptance of sensory properties of yogurt samples.

15.
Animals (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731261

RESUMO

Lactobacillus acidophilus (L. acidophilus), the most prevalent probiotic, has demonstrated the ability to improve the relative abundance of intestinal microorganisms and boost immunity. However, the underlying mechanisms of these effects remain unclear. This study evaluated body weight, nutrient apparent digestibility, serum indices, and bacterial communities in Chinese rural dogs from a L. acidophilus supplementation group (Lactobacillus acidophilus, n = 6) and a control group (CON, n = 6). The results indicated that L. acidophilus had no significant impact on the body weight and apparent nutrient digestibility of Chinese rural dogs. In comparison with the CON group, L. acidophilus significantly reduced the levels of cholesterol (CHO) and increased the levels of IgA, IFN-α, and T-AOC. Bacterial diversity indices were significantly reduced in the LAC group compared to the CON groups, and MetaStat analysis demonstrated notable distinctions in 14 bacterial genera between the groups. These bacterial genera exhibited correlations with physiological indices such as CHO, IgA, IFN-α, and T-AOC. In conclusion, L. acidophilus can modulate lipid metabolism, immunity, and antioxidant capacity by regulating the relative abundance of specific bacterial communities, which helps dogs to adapt to today's lifestyle.

16.
Genes (Basel) ; 15(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674370

RESUMO

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Assuntos
Lactobacillus plantarum , Camundongos Endogâmicos BALB C , Probióticos , Salmonella typhimurium , Transcriptoma , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Camundongos , Lactobacillus acidophilus , Metaboloma , Metabolômica/métodos , Infecções por Salmonella/imunologia , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonelose Animal/genética , Salmonelose Animal/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos
17.
Med Oncol ; 41(5): 106, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575697

RESUMO

Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.


Assuntos
Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Proteínas Quinases Ativadas por AMP , Nanopartículas Metálicas/química , Metaloproteinase 9 da Matriz , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR , Proteínas Proto-Oncogênicas c-bcl-2 , Extratos Vegetais/química
18.
Fish Shellfish Immunol ; 149: 109570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643956

RESUMO

The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.


Assuntos
Microbioma Gastrointestinal , Lactobacillus acidophilus , Probióticos , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Probióticos/farmacologia , Ração Animal/análise , Dieta/veterinária
19.
Food Sci Nutr ; 12(4): 2747-2759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628191

RESUMO

The effects of blueberry (BB) and jujube fruit (JF) on the quality parameters, functional, probiotic (Lactobacillus acidophilus DSM 20079) viability, and sensorial properties of probiotic ice cream were investigated. No statistical differences were discovered regarding titratable acidity and L. acidophilus DSM 20079 counts between all samples. However, the ice creams preserved the survivability of probiotic bacteria during the storage period. The probiotic ice creams had counts of viable L. acidophilus DSM 20079 ranging from 8.42 to 8.80 log CFU/g which met the minimum required to achieve probiotic effects after 60 days of storage. Probiotic ice cream with BB or JF had significantly lower L* values than the control, and the BB addition caused the greatest decrease. The addition of both fruits clearly enhanced the total phenolic content and antioxidative activity in ice cream. The incorporation of BB or JF into the ice creams did not statistically affect the overrun value, while the addition of both fruits dramatically affected the first dripping time and increased hardness. Overall, sensory attributes were not significantly altered by the fortification of either fruit relative to the control, so these fruits can be added at higher concentrations to ice cream formulations for further studies.

20.
Int Dent J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679518

RESUMO

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS: The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS: A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS: L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...