Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Environ Toxicol Pharmacol ; : 104564, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277068

RESUMO

Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.

2.
Sci Rep ; 14(1): 20403, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223212

RESUMO

Leukemia inhibitory factor (LIF) is involved in the progression of different cancers. In this study, we investigated the effect of anti-LIF antibodies on immune-related gene expression in the Balb/c mouse model of breast cancer. To immunize mice against LIF, recombinant LIF with Freund adjuvant was injected into the test group, whereas the control group received phosphate-buffered saline with adjuvant. Tumor induction (4T1 cell line) was performed by increasing the antibody titer. The expression of immune-related genes was evaluated by real-time PCR. The anti-LIF titer was significantly increased in the immunized group. The expression of genes related to the differentiation of T helper (Th)-1, Th-2, and Th-17 cells was significantly higher in the immunized group than in the control group. In addition, anti-LIF did not have a significant effect on the expression of genes related to the differentiation of regulatory T cells, and immune checkpoint-associated genes. Additionally, the test group had higher survival and lower tumor development rates. The results demonstrated that the anti-LIF antibody may potentially play a role in the differentiation of immune cells or immune responses. However, further studies utilizing advanced techniques are necessary to validate its function.


Assuntos
Neoplasias da Mama , Fator Inibidor de Leucemia , Camundongos Endogâmicos BALB C , Animais , Feminino , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/imunologia , Camundongos , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Modelos Animais de Doenças , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Anticorpos/imunologia
3.
Am J Med Sci ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313116

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is a common pathophysiological mechanism of acute kidney injury (AKI). There is an urgent need for a more comprehensive analysis of its underlying mechanisms. MATERIALS AND METHODS: The RNA-sequencing dataset GSE153625 was used to examine differentially expressed genes (DEGs) of kidney tissues in IRI-AKI mice compared with sham mice. We used 10 algorithms provided by cytohubba plugin and four external datasets (GSE192532, GSE52004, GSE98622, and GSE185383) to screen for hub genes. The IRI-AKI mouse model with different reperfusion times was established to validate the expression of hub gene in the kidneys. HK-2 cells were cultured in vitro under hypoxia/reoxygenation (H/R) conditions, via transfection with si-LIF or supplementation with the LIF protein to explore the function of the LIF gene. RESULTS: We screened a total of 1,540 DEGs in the IRI group compared with the sham group and identified that the LIF hub gene may play potential roles in IRI-AKI. LIF was markedly upregulated in the kidney tissues of IRI-AKI mice, as well as in HK-2 cells grown under H/R conditions. The knockdown of LIF aggravated apoptosis and oxidative stress (OS) injury under H/R conditions. Administration of the LIF protein rescued the effects of si-LIF, alleviating cellular apoptosis and OS. CONCLUSION: These findings indicate an important role of the LIF gene in term of regulating apoptosis and OS in the early phases of IRI-AKI. Targeting LIF may therefore represent a promising therapeutic strategy for IRI-AKI.

4.
Bone ; 189: 117266, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341481

RESUMO

Leukemia inhibitory factor (LIF) is a multifunctional cytokine that plays a crucial role in various biological processes. However, LIF involvement in iron metabolism remains almost unexplored. This study aimed to explore the impact of LIF on systemic iron transportation and its potential role in ferroptosis in osteoblasts. We observed that the Lif-deficient (Lif-/-) mice is characterized by a reduction in bone mass and a decrease in bone mineral density compared with wild-type (WT) mice. Energy-dispersive X-ray spectroscopy revealed a marked increase in iron content on the surface of femurs from Lif-/- mice. Meanwhile, iron stores test lower iron levels in the spleens and higher levels in the femurs of Lif-/- mice. Besides, Lif-/- mice display increased levels of serum iron, total iron-binding capacity, unsaturated iron-binding capacity, and transferrin saturation and serum ferritin relative to WT mice. Hepcidin mRNA expression reduction in the liver of Lif-/- mice. It also holds true in the AML-12 hepatocyte cell line after Lif-knockdown. Immunohistochemistry and RT-PCR revealed elevated ferroportin (FPN) in duodenal cells of Lif-/- mice. Lif-deficiency decreases SLC7A11 levels in osteoblasts. In addition, overexpression of LIF downregulates CD71, DCYTB, and DMT1, thereby reducing iron uptake in iron-overloaded cells. Femur immunohistochemistry (IHC) revealed increased ACSL4 and decreased GPX4 and SLC7A11, indicating an increase in ferroptosis of osteoblasts in Lif-/- mice. Whole-transcriptome sequencing showed gene expression changes after Lif-knockdown, exhibiting a negative correlation with genes involved in long-chain fatty acid transport, mitochondrial organization, and the p38 MAPK signaling pathway. These results demonstrate that Lif-deficiency alter systemic iron metabolism and increases the susceptibility of osteoblasts to ferroptosis.

5.
J Leukoc Biol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178293

RESUMO

Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, plays a central role in homeostasis and disease. Interestingly, some of the pleiotropic effects of LIF have been attributed to the modulation of macrophage functions although the molecular underpinnings have not been explored at a genome-wide scale. Herein, we investigated LIF-driven transcriptional changes in murine bone marrow-derived macrophages (BMDM) by RNA-seq. In silico analyses revealed a selective and time-dependent remodelling of macrophage gene expression programs associated with lipid metabolism and cell activation. Accordingly, a subset of LIF-upregulated transcripts related to cholesterol metabolism and lipid internalization was validated by RT-qPCR. This was accompanied by a LIF-enhanced capacity for lipid accumulation in macrophages upon incubation with oxidated low-density lipoprotein (Ox-LDL). Mechanistically, LIF triggered the phosphorylation (Y705 and S727) and nuclear translocation of the transcription factor STAT3 in BMDM. Consistent with this, Ingenuity Pathway Analysis (IPA) identified STAT3 as an upstream regulator of a subset of transcripts, including Il4ra, in LIF-treated macrophages. Notably, LIF priming enhanced BMDM responses to IL-4-mediated M2 polarization (i.e., increased arginase activity and accumulation of transcripts encoding for M2 markers). Conversely, LIF stimulation had no significant effect in BMDM responses to M1 polarizing stimuli (IFNγ and LPS). Thus, our study provides insight into the transcriptional landscape of LIF-treated macrophages, shedding light on its role in lipid metabolism and M2 polarization responses. A better understanding of the regulatory mechanisms governing LIF-driven changes might help informing novel therapeutic approaches aiming to reprogram macrophage phenotypes in diseased states (e.g., cancer, atherosclerosis, infection, etc.).

6.
Adv Sci (Weinh) ; : e2404476, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206755

RESUMO

Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.

7.
Kidney Int ; 106(4): 611-624, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084258

RESUMO

Medial vascular calcification in chronic kidney disease (CKD) involves pro-inflammatory pathways induced by hyperphosphatemia. Several interleukin 6 family members have been associated with pro-calcific effects in vascular smooth muscle cells (VSMCs) and are considered as therapeutic targets. Therefore, we investigated the role of leukemia inhibitory factor (LIF) during VSMC calcification. LIF expression was found to be increased following phosphate exposure of VSMCs. LIF supplementation aggravated, while silencing of endogenous LIF or LIF receptor (LIFR) ameliorated the pro-calcific effects of phosphate in VSMCs. The soluble LIFR mediated antagonistic effects towards LIF and reduced VSMC calcification. Mechanistically, LIF induced phosphorylation of the non-receptor tyrosine-protein kinase 2 (TYK2) and signal transducer and activator of transcription-3 (STAT3) in VSMCs. TYK2 inhibition by deucravacitinib, a selective, allosteric oral immunosuppressant used in psoriasis treatment, not only blunted the effects of LIF, but also interfered with the pro-calcific effects induced by phosphate. Conversely, TYK2 overexpression aggravated VSMC calcification. Ex vivo calcification of mouse aortic rings was ameliorated by Tyk2 pharmacological inhibition and genetic deficiency. Cholecalciferol-induced vascular calcification in mice was improved by Tyk2 inhibition and in the Tyk2-deficient mice. Similarly, calcification was ameliorated in Abcc6/Tyk2-deficient mice after adenine/high phosphorus-induced CKD. Thus, our observations indicate a role for LIF in CKD-associated vascular calcification. Hence, the effects of LIF identify a central pro-calcific role of TYK2 signaling, which may be a future target to reduce the burden of vascular calcification in CKD.


Assuntos
Fator Inibidor de Leucemia , Músculo Liso Vascular , Miócitos de Músculo Liso , Insuficiência Renal Crônica , Transdução de Sinais , TYK2 Quinase , Calcificação Vascular , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosfatos/metabolismo , Fosforilação , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Calcificação Vascular/patologia , Calcificação Vascular/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/genética
8.
Reumatol Clin (Engl Ed) ; 20(6): 287-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991821

RESUMO

INTRODUCTION AND OBJECTIVES: In this study, we aimed to evaluate LIF levels and its possible relationship with disease activity in patients with Takayasu's (TAK) and Giant cell arteritis (GCA) patients. MATERIALS AND METHODS: 23 Takayasu's arteritis, 9 Giant cell arteritis patients and 25 healthy volunteers were included in the study. Serum LIF levels were measured ELISA. RESULTS: The mean age of Giant cell arteritis patients was statistically significantly higher than the other groups (p<0.001). The rate of women was found to be higher in Takayasu's arteritis (p=0.021). When healthy control, patients with GCA and Takayasu arteritis were compared, there was a difference in LIF values (p=0.018). In subgroup analyzes, LIF values were found to be higher in GCA patients compared to healthy controls (p<0.05). There was no statistically significant correlation between LIF and CRP (Rho=-0.038, p=0.778), ESR (Rho=0.114, p=0.399) and ITAS (Rho=-0.357, p=0.094). While CRP was statistically significantly higher in patients with disease activity (p=0.003), there was no statistically significant difference between patients in terms of ESR and LIF values. While there was a statistically significant relationship between CRP (OR=1.19 [1.03-1.37], p=0.018) and disease activity in univariate analyses, no statistically significant variable was found in multivariable analyses. CONCLUSIONS: LIF values were significantly higher in patients with Giant cell arteritis compared to healthy controls.


Assuntos
Arterite de Células Gigantes , Fator Inibidor de Leucemia , Arterite de Takayasu , Humanos , Arterite de Takayasu/sangue , Feminino , Arterite de Células Gigantes/sangue , Estudos Transversais , Masculino , Adulto , Pessoa de Meia-Idade , Fator Inibidor de Leucemia/sangue , Estudos de Casos e Controles , Idoso , Adulto Jovem
9.
FEBS J ; 291(18): 4009-4023, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38975832

RESUMO

Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.


Assuntos
Caquexia , Interleucina-6 , Neoplasias , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/patologia , Caquexia/imunologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/imunologia , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/imunologia , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Oncostatina M/metabolismo , Oncostatina M/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/patologia
10.
Mol Hum Reprod ; 30(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788747

RESUMO

Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.


Assuntos
Implantação do Embrião , Receptor alfa de Estrogênio , Fator Inibidor de Leucemia , Útero , Animais , Feminino , Implantação do Embrião/fisiologia , Útero/metabolismo , Camundongos , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Gravidez , Camundongos Knockout , Transdução de Sinais
11.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791454

RESUMO

Previous omics research in patients with complex congenital heart disease and single-ventricle circulation (irrespective of the stage of palliative repair) revealed alterations in cardiac and systemic metabolism, inter alia abnormalities in energy metabolism, and inflammation, oxidative stress or endothelial dysfunction. We employed an affinity-proteomics approach focused on cell surface markers, cytokines, and chemokines in the serum of 20 adult Fontan patients with a good functioning systemic left ventricle, and we 20 matched controls to reveal any specific processes on a cellular level. Analysis of 349 proteins revealed 4 altered protein levels related to chronic inflammation, with elevated levels of syndecan-1 and glycophorin-A, as well as decreased levels of leukemia inhibitory factor and nerve growth factor-ß in Fontan patients compared to controls. All in all, this means that Fontan circulation carries specific physiological and metabolic instabilities, including chronic inflammation, oxidative stress imbalance, and consequently, possible damage to cell structure and alterations in translational pathways. A combination of proteomics-based biomarkers and the traditional biomarkers (uric acid, γGT, and cholesterol) performed best in classification (patient vs. control). A metabolism- and signaling-based approach may be helpful for a better understanding of Fontan (patho-)physiology. Syndecan-1, glycophorin-A, leukemia inhibitory factor, and nerve growth factor-ß, especially in combination with uric acid, γGT, and cholesterol, might be interesting candidate parameters to complement traditional diagnostic imaging tools and the determination of traditional biomarkers, yielding a better understanding of the development of comorbidities in Fontan patients, and they may play a future role in the identification of targets to mitigate inflammation and comorbidities in Fontan patients.


Assuntos
Biomarcadores , Proteínas Sanguíneas , Técnica de Fontan , Inflamação , Proteômica , Humanos , Adulto , Masculino , Inflamação/metabolismo , Feminino , Proteínas Sanguíneas/metabolismo , Técnica de Fontan/efeitos adversos , Biomarcadores/sangue , Proteômica/métodos , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/patologia , Fibrose , Adulto Jovem , Neovascularização Patológica/metabolismo , Estresse Oxidativo , Angiogênese
12.
Front Pediatr ; 12: 1341841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628360

RESUMO

Stüve-Wiedemann syndrome (SWS) is a rare autosomal recessive disorder that is characterized by bowing of long bones, dysautonomia, temperature dysregulation, swallowing and feeding difficulties, and frequent respiratory infections. Respiratory distress and hyperthermic events are the leading causes of early neonatal death, and most patients are not expected to survive past infancy. Here, we report on the survival of a 5-year-old male with SWS, discussing his case presentation, providing a brief clinical course, and discussing the outcome. This case adds to the literature surrounding rare instances of childhood survivors of SWS and raises awareness for this syndrome to facilitate an earlier recognition, intervention, and genetic counseling for the families, thereby improving understanding of this disease and the health outcomes for the children affected by this condition.

13.
Mol Biol Rep ; 51(1): 542, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642200

RESUMO

BACKGROUND: Inflammatory cancer-associated fibroblasts (iCAFs) was first identified by co-culture of pancreatic stellate cells and tumor organoids. The key feature of iCAFs is IL-6high/αSMAlow. We examine this phenomenon in gastric cancer using two cell lines of gastric fibroblasts (HGF and YS-1). METHODS AND RESULTS: HGF or YS-1 were co-cultured with MKN7 (a gastric adenocarcinoma cell line) in Matrigel. IL-6 protein levels in the culture supernatant were measured by ELISA. The increased production of IL-6 was not observed in any of the combinations. Instead, the supernatant of YS-1 exhibited the higher levels of IL-6. YS-1 showed IL-6high/αSMA (ACTA2)low in real-time PCR, mRNA-seq and immunohistochemistry. In mRNA-seq, iCAFs-associated genes and signaling pathways were up-regulated in YS-1. No transition to myofibroblastic phenotype was observed by monolayer culture, or the exposure to sonic hedgehog (SHH) or TGF-ß. YS-1 conditioned medium induced changes of morphology and stem-ness/differentiation in NUGC-3 (a human gastric adenocarcinoma cell line) and UBE6T-15 (a human bone marrow-derived mesenchymal stem cell line). CONCLUSIONS: YS-1 is a stable cell line of gastric iCAFs. This discovery will promote further research on iCAFs for many researchers.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Hedgehog/metabolismo , Linhagem Celular Tumoral , Neoplasias Gástricas/metabolismo , Fibroblastos/metabolismo , Adenocarcinoma/metabolismo , RNA Mensageiro/metabolismo
14.
J Periodontol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488753

RESUMO

BACKGROUND: To explore the role of leukemia inhibitory factor (LIF) in periodontitis via in vivo and in vitro experiments. METHODS: The second upper molar of LIF knockout mice and their wild-type littermates were ligated for 8 days. Micro-computed tomography (micro-CT), histological analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The expression levels of proinflammatory cytokines were examined in mouse bone marrow derived macrophages and human periodontal ligament fibroblasts (HPDLFs) after lipopolysaccharide (LPS) treatment. RESULTS: LIF deficiency promoted alveolar bone loss, inflammatory cells infiltration, osteoclasts formation and collagen fiber degradation in ligature-induced mouse, along with higher expressions of proinflammatory cytokines, including interleukin-6 (IL6), IL-1ß (IL1B), tumor necrosis factor-α (TNFA), matrix metalloproteinase 13 (MMP13), and RANKL/OPG ratio. Additionally, LIF deletion led to higher expression levels of these proinflammatory cytokines in mouse bone marrow-derived macrophages from both femur and alveolar bone and HPDLFs when treated with LPS. Administration of recombined LIF attenuated TNFA, IL1B, and RANKL/OPG ratio in HPDLFs. CONCLUSIONS: These findings indicate that LIF deficiency promotes the progress of periodontitis via modulating immuno-inflammatory responses of macrophages and periodontal ligament fibroblasts, and the application of LIF may be an adjunctive treatment for periodontitis to resolute inflammation.

15.
Mol Oncol ; 18(6): 1665-1686, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381121

RESUMO

Prostate stromal cells play a crucial role in the promotion of tumor growth and immune evasion in the tumor microenvironment (TME) through intricate molecular alterations in their interaction with prostate cancer (PCa) cells. While the impact of these cells on establishing an immunosuppressive response and influencing PCa aggressiveness remains incompletely understood. Our study shows that the activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) pathway in both prostate tumor and stromal cells, following androgen deprivation therapy (ADT), leads to the development of an immunosuppressive TME. Activation of LIF/LIFR signaling in PCa cells induces neuroendocrine differentiation (NED) and upregulates immune checkpoint expression. Inhibition of LIF/LIFR attenuates these effects, underscoring the crucial role of LIF/LIFR in linking NED to immunosuppression. Prostate stromal cells expressing LIFR contribute to NED and immunosuppressive marker abundance in PCa cells, while LIFR knockdown in prostate stromal cells reverses these effects. ADT-driven LIF/LIFR signaling induces brain-derived neurotrophic factor (BDNF) expression, which, in turn, promotes NED, aggressiveness, and immune evasion in PCa cells. Clinical analyses demonstrate elevated BDNF levels in metastatic castration-resistant PCa (CRPC) and a positive correlation with programmed death-ligand 1 (PDL1) and immunosuppressive signatures. This study shows that the crosstalk between PCa cells and prostate stromal cells enhances LIF/LIFR signaling, contributing to an immunosuppressive TME and NED in PCa cells through the upregulation of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator Inibidor de Leucemia/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Animais , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/imunologia , Diferenciação Celular
16.
Kidney Int Rep ; 9(2): 423-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344714

RESUMO

Introduction: Galactose-deficient IgA1 (Gd-IgA1) plays a key role in the pathogenesis of IgA nephropathy (IgAN). Tonsillectomy has been beneficial to some patients with IgAN, possibly due to the removal of tonsillar cytokine-activated cells producing Gd-IgA1. To test this hypothesis, we used immortalized IgA1-producing cell lines derived from tonsils of patients with IgAN or obstructive sleep apnea (OSA) and assessed the effect of leukemia inhibitory factor (LIF) or oncostatin M (OSM) on Gd-IgA1 production. Methods: Gd-IgA1 production was measured by lectin enzyme-linked immunosorbent assay; JAK-STAT signaling in cultured cells was assessed by immunoblotting of cell lysates; and validated by using small interfering RNA (siRNA) knock-down and small-molecule inhibitors. Results: IgAN-derived cells produced more Gd-IgA1 than the cells from patients with OSA, and exhibited elevated Gd-IgA1 production in response to LIF, but not OSM. This effect was associated with dysregulated STAT1 phosphorylation, as confirmed by STAT1 siRNA knock-down. JAK2 inhibitor, AZD1480 exhibited a dose-dependent inhibition of the LIF-induced Gd-IgA1 overproduction. Unexpectedly, high concentrations of AZD1480, but only in the presence of LIF, reduced Gd-IgA1 production in the cells derived from patients with IgAN to that of the control cells from patients with OSA. Based on modeling LIF-LIFR-gp130-JAK2 receptor complex, we postulate that LIF binding to LIFR may sequester gp130 and/or JAK2 from other pathways; and when combined with JAK2 inhibition, enables full blockade of the aberrant O-glycosylation pathways in IgAN. Conclusion: In summary, IgAN cells exhibit LIF-mediated overproduction of Gd-IgA1 due to abnormal signaling. JAK2 inhibitors can counter these LIF-induced effects and block Gd-IgA1 synthesis in IgAN.

17.
Biochem Genet ; 62(5): 3695-3708, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38198021

RESUMO

Colorectal cancer (CRC) is a common human malignancy and the third leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) were considered to play important roles in the genesis and development of many tumors. In recent years, it has been observed that leukemia inhibitory factor (LIF) might be involved in the regulation of stemness in cancer cells. In this study, we observed that LIF could increase the spheroid formation and stemness marker expression (inculding Nanog and SOX2) in CRC cell lines, such as HCT116 and Caco2 cells. Meanwhile, we also observed that LIF could upregulate LncRNA H19 expression via PI3K/AKT pathway. Knockdown of the expression of LncRNA H19 could decrease the spheroid formation and SOX2 expression in LIF-treated HCT116 and Caco2 cells, and thereby LncRNA H19 knockdown could compensate for the stemness enhancement effects induced by LIF. Our results indicated that LncRNA H19 might participate in the stemness promotion of LIF in CRC cells.


Assuntos
Neoplasias Colorretais , Fator Inibidor de Leucemia , Células-Tronco Neoplásicas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células CACO-2 , Células HCT116 , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo
18.
Inflammation ; 47(1): 307-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782452

RESUMO

Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.


Assuntos
Pulpite , Animais , Humanos , Camundongos , Polpa Dentária/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Pulpite/metabolismo
19.
Cell Oncol (Dordr) ; 47(3): 1065-1070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150153

RESUMO

STAT3 is a pleiotropic transcription factor overactivated in 70% of solid tumours. We have recently reported that inactivating mutations on residues susceptible to post-translational modifications (PTMs) in only one of the monomers (i.e. asymmetric) caused changes in the cellular distribution of STAT3 homodimers. Here, we used more controlled experimental conditions, i.e. without the interference of endogenous STAT3 (STAT3-/- HeLa cells) and in the presence of a defined cytokine stimulus (Leukemia Inhibitory Factor, LIF), to provide further evidence that asymmetric PTMs affect the nuclear translocation of STAT3 homodimers. Time-lapse microscopy for 20 min after LIF stimulation showed that S727 dephosphorylation (S727A) and K685 inactivation (K685R) slightly enhanced the nuclear translocation of STAT3 homodimers, while K49 inactivation (K49R) delayed STAT3 nuclear translocation. Our findings suggest that asymmetrically modified STAT3 homodimers could be a new level of STAT3 regulation and, therefore, a potential target for cancer therapy.


Assuntos
Núcleo Celular , Fator Inibidor de Leucemia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT3 , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células HeLa , Fator Inibidor de Leucemia/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
20.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134636

RESUMO

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator Inibidor de Leucemia/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...