Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Heliyon ; 10(14): e33854, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100478

RESUMO

Background: The link between peripheral blood leukocyte telomere length (LTL) and endometriosis has remained uncertain. In order to investigate this association, a two-sample Mendelian randomization(MR) analysis was performed. Methods: We extracted Single-nucleotide polymorphisms (SNPs) associated with LTL from a published genome-wide association study (GWAS) comprising 472,174 individuals. Data on endometriosis, including its seven subtypes, were sourced from the iue open gwas project. Four methods were employed for MR: Inverse-variance weighted analysis (IVW), Mendelian randomization-Egger regression (MR Egger), weighted-median analysis, and Weighted Mode. Results: Genetically determined LTL was identified as a factor that can promote the occurrence of endometriosis. With every 1-SD increase in LTL, the risk of endometriosis increased by 26 % (OR = 1.260, 95 % CI = 1.073 to 1.479; P = 0.005). Genetically determined LTL also contributed to endometriosis subtypes: intestine (OR = 3.584, 95 % CI = 1.597 to 8.041; P = 0.002), ovary (OR = 1.308, 95 % CI = 1.033 to 1.655; P = 0.026), rectovaginal septum and vagina (OR = 1.360, 95 % CI = 1.000 to 1.851; P = 0.049). There was no observed causal relationship between LTL and the other four subtypes. Conclusion: This study, utilizing genetic data, offers evidence that longer LTL may cause increased risks of endometriosis, specifically endometriosis of the intestine, ovary, rectovaginal septum and vagina. These findings not only suggest that LTL may serve as a predictive factor for assessing the prevalence of three endometriosis subtypes but also provide new insights into the study of endometriosis pathogenesis.

2.
Eur J Nutr ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39174689

RESUMO

PURPOSE: To investigate whether micronutrient intake from food as well as the regular uptake of specific vitamins and/or minerals are associated with leucocyte telomere length (LTL). METHODS: This is a cross-sectional study using data from 422,693 UK Biobank participants aged from 40 to 69 years old, during 2006-2010. LTL was measured as the ratio of telomere repeat number to a single-copy gene and was loge-transformed and z-standardized (z-LTL). Information concerning supplement use was collected at baseline through the touchscreen assessment, while micronutrient intake from food were self-reported through multiple web-based 24 h recall diaries. The association between micronutrient intake or supplement use and z-LTL was assessed using multivariable linear regression models adjusting for demographic, lifestyle and clinical characteristics. RESULTS: About 50% (n = 131,810) of the participants, with complete data on all covariates, self-reported regular supplement intake. Whilst overall supplement intake was not associated with z-LTL, trends toward shorter z-LTL with regular vitamin B (-0.019 (95% CI: -0.041; 0.002)) and vitamin B9 (-0.027 (-0.054; 0.000)) supplement intake were observed. z-LTL was associated with food intake of pantothenic acid (-0.020 (-0.033; -0.007)), vitamin B6 (-0.015 (-0.027; -0.003)), biotin (0.010 (0.002; 0.018)) and folate (0.016 (0.003; 0.030)). Associations of z-LTL with these micronutrients were differentiated according to supplement intake. CONCLUSION: Negative associations equivalent to a year or less of age-related change in LTL between micronutrient intake and LTL were observed. Due to this small effect, the clinical importance of the associations and any relevance to the effects of vitamin and micronutrient intake toward chronic disease prevention remains uncertain.

3.
Aging Cell ; : e14266, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958042

RESUMO

Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.

4.
J Ovarian Res ; 17(1): 146, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010148

RESUMO

BACKGROUND: The relationship between leukocyte telomere length (LTL) and female reproductive endocrine diseases has gained significant attention and research interest in recent years. However, there is still limited understanding of the exact impacts of LTL on these diseases. Therefore, the primary objective of this study was to investigate the genetic causal association between LTL and female reproductive endocrine diseases by employing Mendelian randomization (MR) analysis. METHODS: Instruments for assessing genetic variation associated with exposure and outcome were derived from summary data of published genome-wide association studies (GWAS). Inverse-variance weighted (IVW) was utilized as the main analysis method to investigate the causal relationship between LTL and female reproductive endocrine diseases. The exposure data were obtained from the UK Biobanks GWAS dataset, comprising 472,174 participants of European ancestry. The outcome data were acquired from the FinnGen consortium, including abnormal uterine bleeding (menorrhagia and oligomenorrhea), endometriosis (ovarian endometrioma and adenomyosis), infertility, polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI) and premenstrual syndrome (PMS). Furthermore, to account for potential confounding factors such as smoking, alcohol consumption, insomnia, body mass index (BMI) and a history of pelvic inflammatory disease (PID), multivariable MR (MVMR) analysis was also conducted. Lastly, a series of pleiotropy tests and sensitivity analyses were performed to ensure the reliability and robustness of our findings. P < 0.0063 was considered to indicate statistically significant causality following Bonferroni correction. RESULTS: Our univariable MR analysis demonstrated that longer LTL was causally associated with an increased risk of menorrhagia (IVW: odds ratio [OR]: 1.1803; 95% confidence interval [CI]: 1.0880-1.2804; P = 0.0001) and ovarian endometrioma (IVW: OR: 1.2946; 95%CI: 1.0970-1.5278; P = 0.0022) at the Bonferroni significance level. However, no significant correlation was observed between LTL and oligomenorrhea (IVW: OR: 1.0124; 95%CI: 0.7350-1.3946; P = 0.9398), adenomyosis (IVW: OR: 1.1978; 95%CI: 0.9983-1.4372; P = 0.0522), infertility (IVW: OR: 1.0735; 95%CI: 0.9671-1.1915; P = 0.1828), PCOS (IVW: OR: 1.0633; 95%CI: 0.7919-1.4278; P = 0.6829), POI (IVW: OR: 0.8971; 95%CI: 0.5644-1.4257; P = 0.6459) or PMS (IVW: OR: 0.7749; 95%CI: 0.4137-1.4513; P = 0.4256). Reverse MR analysis indicated that female reproductive endocrine diseases have no causal effect on LTL. MVMR analysis suggested that the causal effect of LTL on menorrhagia and ovarian endometrioma remained significant after accounting for smoking, alcohol consumption, insomnia, BMI and a history of PID. Pleiotropic and sensitivity analyses also showed robustness of our results. CONCLUSION: The results of our bidirectional two-sample MR analysis revealed that genetically predicted longer LTL significantly increased the risk of menorrhagia and ovarian endometrioma, which is consistent with the findings from MVMR studies. However, we did not notice any significant effects of LTL on oligomenorrhea, adenomyosis, infertility, PCOS, POI or PMS. Additionally, reproductive endocrine disorders were found to have no impact on LTL. To enhance our understanding of the effect and underlying mechanism of LTL on female reproductive endocrine diseases, further large-scale studies are warranted in the future.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Feminino , Telômero/genética , Homeostase do Telômero/genética , Doenças dos Genitais Femininos/genética
5.
Aging (Albany NY) ; 16(14): 11151-11161, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39074257

RESUMO

A shorter leukocyte telomere length (LTL) is reported to be associated with age-related diseases, including osteoporosis. Many studies have tried identifying the association between LTL and osteoporosis, although it remains controversial. This study aimed to determine whether osteoporosis is independently associated with LTL shortening in a prospective longitudinal cohort. The KBASE study is an independent multicenter prospective cohort in South Korea, which began in 2014. We compared the LTL values for each participant at baseline and over a 2-year follow-up period. Boxplots were used to demonstrate the differences in the change in LTL over a 2-year follow-up according to osteoporosis. Multivariable linear regression was conducted to identify whether osteoporosis is independently associated with the rate of telomere shortening. A total of 233 subjects (from 55 to 88 years) from the KBASE cohort were finally enrolled in the study. We observed that the LTL decreased by approximately 1.2 kbp over 2 years. While the LTL decreased as age increased, the rate of LTL shortening did not increase with age. Multivariable linear regression analysis indicated that only osteoporosis was independently associated with rapid LTL shortening over 2 years (B, -8.08; p = 0.038). We sought to identify an association between osteoporosis and LTL shortening in an independent prospective cohort. We found that participants with osteoporosis had significantly faster LTL shortening over 2 years than those without osteoporosis. We hope this study will help elucidate the underlying mechanisms in the relationship between LTL and osteoporosis in the future.


Assuntos
Osteoporose , Encurtamento do Telômero , Humanos , Osteoporose/genética , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Prospectivos , República da Coreia/epidemiologia , Estudos Longitudinais , Telômero/genética , Leucócitos , Envelhecimento/genética
6.
Endocr Connect ; 13(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39045889

RESUMO

In the last 40 years, there has been a notable rise in the occurrence of diabetes within China, leading to the country now having the highest number of individuals affected by this condition globally. This prospective observational study examined the effect of different baseline relative leukocyte telomere length (RTL) and the combined effect of baseline RTL and plasma phospholipid fatty acid (PPFA) on the risk of developing diabetes. Adults from Ningxia Province who underwent baseline and follow-up surveys were included in the study. The correlation between the baseline RTL and PPFA was investigated using a multiple linear regression model. The combined effects of baseline RTL and PPFA levels on the risk of developing type 2 diabetes mellitus (T2DM) were investigated using a Cox regression model with time as the covariate. A total of 1461 study subjects were included in this study. According to the diagnostic criteria of the Chinese Diabetes Society, 141 subjects developed T2DM during the follow-up period. The baseline age was negatively correlated with RTL. After adjustment for age, C16:0, C18:1 n-9, C20:4 n-6, C20:3 n-3, and monounsaturated fatty acid (MUFA) concentrations were negatively correlated with RTL. Multiple linear regression analysis showed that C16:0 and MUFA concentrations influenced RTL. Subjects with shorter RTL at baseline had a higher risk of developing diabetes than those with longer RTL. Subjects with shorter RTL and higher C16:0 and MUFA concentrations at baseline had a higher risk of developing T2DM than those with longer RTL and lower C16:0 and MUFA concentrations. Our findings indicated that PPFA affects changes in RTL. In addition, RTL and PPFA are associated with the occurrence of T2DM.

7.
Toxics ; 12(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38922089

RESUMO

There is evidence to support the links between lead and cadmium exposure with hypertension and also with leukocyte telomere length (LTL). The objective of this study is to investigate the role that LTL may play in the relationship between lead and cadmium exposure and hypertension. This study consisted of 3718 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Logistic regression was used to analyze the relationship between blood metals with hypertension, and the mediating model was used to evaluate the mediating effect of LTL. In the fully adjusted model, both blood lead and cadmium ln-transformed concentrations were significantly positively associated with hypertension risk, as were all quartiles of blood lead. Additionally, we observed positive linear dose-response relationships with hypertension by restricted cubic spline analysis (both p overall < 0.001, p non-linear = 0.3008 for lead and p non-linear = 0.7611 for cadmium). The ln-transformed blood lead and cadmium concentrations were associated with shorter LTL. LTL was inversely related to hypertension and the OR was 0.65 (95% CI: 0.47 to 0.89). Furthermore, LTL had mediating effects on the associations of blood lead and cadmium with hypertension risk, and the mediation proportions were 2.25% and 4.20%, respectively. Our findings suggested that exposure to lead and cadmium raised the risk of hypertension, while LTL played as a mediating factor.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38899963

RESUMO

OBJECTIVE: To investigate the relationship between maternal blood pressure (BP) and neonatal cord blood telomere length (TL) during pregnancy, and to clarify the sensitive period. METHODS: We conducted a prospective cohort study with 621 mother-newborn pairs from the Guangxi Zhuang Birth Cohort (GZBC) in China. Multiple informant models, restricted cubic spline regression (RCS) models, and quantile regression models were conducted to analyze the correlation between maternal BP and neonatal TL. RESULTS: Maternal diastolic blood pressure (DBP) was inversely related to neonatal cord blood TL in the second trimester (P = 0.015) and the third trimester (P = 0.011). There was a male-specific relationship between maternal BP and neonatal TL. A 1 mmHg increment in maternal systolic blood pressure (SBP) and DBP during the second trimester was related with 0.42% (95% CI: -0.80%, -0.04%) and 0.61% (95% CI: -1.13%, -0.09%) shorter TL in male newborns, respectively. Per unit increase of maternal DBP during the third trimester was related with 0.54% (95% CI: -1.03%, -0.05%) shorter TL in male newborns. Pregnant women with hypertensive disease of pregnancy (HDP) had male offspring with shorter TL (P = 0.003). However, no significant relationships were found in female newborns (P = 0.570). CONCLUSION: Maternal BP during pregnancy is inversely correlated with male neonatal TL and the second and third trimesters are sensitive windows.

9.
Sci Rep ; 14(1): 13975, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886520

RESUMO

The evidence about the associations of leukocyte telomere length (LTL) and intermediary cardiovascular phenotypes with adverse cardiovascular outcomes is inconclusive. This study assessed these relationships with cardiovascular imaging, electrocardiography, and the risks of sudden cardiac death (SCD), coronary events, and heart failure (HF) admission. We conducted a cross-sectional analysis of UK Biobank participants enrolled between 2006 and 2010. LTL was measured using quantitative polymerase chain reactions. Electronic health records were used to determine the incidence of SCD, coronary events, and HF admission. Cardiovascular measurements were made using cardiovascular magnetic resonance imaging and machine learning. The associations of LTL with SCD, coronary events, and HF admission and cardiac magnetic resonance imaging, electrocardiogram parameters of 33,043 and 19,554 participants were evaluated by multivariate regression. The median (interquartile range) follow-up period was 11.9 (11.2-12.6) years. Data was analyzed from January to May 2023. Among the 403,382 white participants without coronary artery disease or HF, 181,637 (45.0%) were male with a mean age of 57.1 years old. LTL was independently negatively associated with a risk of SCD (LTL third quartile vs first quartile: hazard ratio [HR]: 0.81, 95% confidence interval [CI]: 0.72-0.92), coronary events (LTL third quartile vs first quartile: HR: 0.88, 95% CI: 0.84-0.92), and HF admission (LTL fourth quartile vs first quartile: HR: 0.84, 95% CI: 0.74-0.95). LTL was also independently positively associated with cardiac remodeling, specifically left ventricular mass index, left-ventricular-end systolic and diastolic volumes, mean left ventricular myocardial wall thickness, left ventricular stroke volume, and with electrocardiogram changes along the negative degree of T-axis. Cross-sectional study results showed that LTL was positively associated with heart size and cardiac function in middle age, but electrocardiography results did not show these associations, which could explain the negative association between LTL and risk of SCD, coronary events, and HF admission in UK Biobank participants.


Assuntos
Leucócitos , Fenótipo , Telômero , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Leucócitos/metabolismo , Estudos Transversais , Telômero/genética , Idoso , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , População Branca/genética , Homeostase do Telômero , Eletrocardiografia , Fatores de Risco , Reino Unido/epidemiologia , Doenças Cardiovasculares/genética
10.
Aging Cell ; : e14241, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943263

RESUMO

In adults, polygenic scores (PGSs) of telomere length (TL) alleles explain about 4.5% of the variance in TL, as measured by quantitative polymerase chain reaction (qPCR). Yet, these PGSs strongly infer a causal role of telomeres in aging-related diseases. To better understand the determinants of TL through the lifespan, it is essential to examine to what extent these PGSs explain TL in newborns. This study investigates the effect of PGSs on TL in both newborns and their parents, with TL measured by Southern blotting and expressed in base-pairs (bp). Additionally, the study explores the impact of PGSs related to transmitted or non-transmitted alleles on TL in newborns. For parents and newborns, the PGS effects on TL were 172 bp (p = 2.03 × 10-15) and 161 bp (p = 3.06 × 10-8), explaining 6.6% and 5.2% of the TL variance, respectively. The strongest PGS effect was shown for maternally transmitted alleles in newborn girls, amounting to 214 bp (p = 3.77 × 10-6) and explaining 7.8% of the TL variance. The PGS effect of non-transmitted alleles was 56 bp (p = 0.0593) and explained 0.6% of the TL variance. Our findings highlight the importance of TL genetics in understanding early-life determinants of TL. They point to the potential utility of PGSs composed of TL alleles in identifying susceptibility to aging-related diseases from birth and reveal the presence of sexual dimorphism in the effect of TL alleles on TL in newborns. Finally, we attribute the higher TL variance explained by PGSs in our study to TL measurement by Southern blotting.

11.
Aging Cell ; 23(8): e14195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747160

RESUMO

Beyond mere prognostication, optimal biomarkers of aging provide insights into qualitative and quantitative features of biological aging and might, therefore, offer useful information for the testing and, ultimately, clinical use of gerotherapeutics. We aimed to develop a proteomic aging clock (PAC) for all-cause mortality risk as a proxy of biological age. Data were from the UK Biobank Pharma Proteomics Project, including 53,021 participants aged between 39 and 70 years and 2923 plasma proteins assessed using the Olink Explore 3072 assay®. 10.9% of the participants died during a mean follow-up of 13.3 years, with the mean age at death of 70.1 years. The Spearman correlation between PAC proteomic age and chronological age was 0.77. PAC showed robust age-adjusted associations and predictions for all-cause mortality and the onset of various diseases in general and disease-free participants. The proteins associated with PAC proteomic age deviation were enriched in several processes related to the hallmarks of biological aging. Our results expand previous findings by showing that biological age acceleration, based on PAC, strongly predicts all-cause mortality and several incident disease outcomes. Particularly, it facilitates the evaluation of risk for multiple conditions in a disease-free population, thereby, contributing to the prevention of initial diseases, which vary among individuals and may subsequently lead to additional comorbidities.


Assuntos
Envelhecimento , Proteômica , Humanos , Pessoa de Meia-Idade , Proteômica/métodos , Idoso , Feminino , Masculino , Adulto , Biomarcadores/sangue
12.
Vavilovskii Zhurnal Genet Selektsii ; 28(2): 190-197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680187

RESUMO

High milk yield is associated with reduced longevity in high-producing dairy cattle breeds. Pre-term culling leads to high replacement heifer demand and economic losses for the dairy industry. Selection for this trait is limited because of low heritability and difficulties in phenotype measurement. Telomeres are elements found at the ends of chromosomes, consisting of repetitive DNA sequences, several thousand base pairs in length, coupled with nucleoprotein complexes. Eventually, in humans and most other animals, telomere length reduces with age. When telomeric DNA is truncated to a critical length, cell ageing, cell cycle arrest, and apoptosis are induced. As a result, telomere length can be considered as a predictor of health risks and an individual's lifespan. The leukocyte telomere length may be used as a proxy phenotype of productive lifespan to improve cattle selection. Our objectives were to assess the effects of breed and breed group (dairy vs. beef) on the leukocyte telomere length and to estimate the effect of cold climate on this trait in Kalmyk cattle populations from the South (Rostov Oblast) and Far North (Republic of Sakha) regions of Russia. The leukocyte telomere lengths were estimated computationally from whole-genome resequencing data. We leveraged data on leukocyte telomere length, sex, and age of 239 animals from 17 cattle breeds. The breed factor had a significant effect on leukocyte telomere length across our sample. There was no difference in leukocyte telomere length between dairy and beef groups. The population factor had a significant effect on leukocyte telomere length in Kalmyk animals. In conclusion, we found that breed, but not breed group (dairy vs. beef), was significantly associated with leukocyte telomere length in cattle. Residence in colder climates was associated with longer leukocyte telomere length in Kalmyk breed cattle.

13.
Hum Mol Genet ; 33(14): 1262-1272, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676403

RESUMO

BACKGROUND: Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS: We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS: We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS: Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.


Assuntos
Predisposição Genética para Doença , Insuficiência Cardíaca , Leucócitos , Telômero , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/epidemiologia , Feminino , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Telômero/genética , Doença Crônica , Idoso , Estudos Prospectivos , Homeostase do Telômero/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Adulto , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla , População Branca/genética , População Europeia
14.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611064

RESUMO

BACKGROUND: Leukocyte telomere length (LTL) and myeloid-derived suppressor cells (MDSC) are associated with aging and the development and progression of cancer. However, the exact nature of this relationship remains unclear. Our study aimed to investigate the potential of LTL and MDSC as diagnostic biomarkers for prostate cancer while also seeking to deepen our understanding of the relationship of these potential biomarkers to each other. METHODS: Our study involved patients undergoing a prostate biopsy. We analyzed the relative LTL in genomic DNA obtained from peripheral blood leukocytes as well as the percentage of MDSC and their subtypes in peripheral blood mononuclear cells (PBMC). Our evaluation focused on examining the relationship between LTL and MDSC and pathological diagnoses as well as investigating the correlation between LTL and MDSC levels. RESULTS: In our study of 102 participants, 56 were pathologically diagnosed with localized prostate cancer (cancer group), while 46 tested negative (control group). The cancer group exhibited significantly shorter LTL in comparison to the control group (p = 0.024). Additionally, the cancer group showed a tendency towards a higher percentage of monocytic MDSC (M-MDSC), although this difference did not reach statistical significance (p = 0.056). Our multivariate logistic regression analysis revealed that patients with shorter LTL and higher percentages of M-MDSC had a 2.98-fold (95% CI = 1.001-8.869, p = 0.049) and 3.03-fold (95% CI = 1.152-7.977, p = 0.025) increased risk of prostate cancer diagnosis, respectively. There was also a significant negative correlation between LTL and M-MDSC. (r = -0.347, p < 0.001). CONCLUSIONS: Our research has established a correlation between LTL and MDSC in patients undergoing biopsy for prostate cancer. Notably, we observed that individuals with localized prostate cancer tend to have shorter LTL and a higher percentage of M-MDSC prior to their diagnosis. These findings suggest that LTL and M-MDSC could potentially serve as adjunctive biomarkers for the early diagnosis of prostate cancer.

15.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540151

RESUMO

BACKGROUND: The interaction between environmental and genetic factors that influence eye growth, regulated by vision, contributes to the development and progression of myopia. This dynamic interaction significantly contributes to the multifaceted development and progression of myopia, a prevalent ocular condition. Our study delves into the associations between ZNF676 and CTC1 gene polymorphisms and their impact on the relative leukocyte telomere length (relative LTL) in myopia, as well as its degree. By unravelling these underpinnings in conjunction with environmental influences, we aim to enhance our understanding of the complex mechanisms that drive the onset and severity of myopia. METHODS: This study included patients with myopia and ophthalmologically healthy subjects. DNA was extracted from peripheral venous blood by the salting out method. Genotyping of ZNF676 rs412658 and CTC1 rs3027234, as well as the measurement of relative LTL, were conducted using a real-time polymerase chain reaction method (RT-PCR). The data obtained were statistically analyzed using the "IBM SPSS Statistics 29.0" software program. RESULTS: The results show that myopic patients who are homozygous for the rs3027234 rare allele genotype of the CTC1 gene have statistically significantly shorter relative LTL compared to patients with the CC and CT genotypes. Also, men with the CTC1 rs3027234 TT genotype have statistically significantly longer leukocyte telomeres than women with the same genotype. The respective median (IQR) of the relative LTL for women and men is 0.280 (0.463) vs. 0.696 (0.440), with a p-value of 0.027. The myopia group with the ZNF676 rs412658 CC genotype has statistically significantly shorter leukocyte telomeres than the control group with the same genotype (age ≤ 29), and the p-value is 0.011. Also, the myopia group with the ZNF676 rs412658 CT and CTC1 rs3027234 CT genotypes have statistically significantly longer leukocyte telomeres than the control group with the same genotypes (age > 29), with p-values that are, respectively, 0.016 and 0.012. The evaluation of the genotype distributions of the polymorphisms in the myopia patients showed that ZNF676 rs412658 CT genotype carriers have 4-fold decreased odds of high myopia occurrence (OR = 0.250; CI: 0.076-0.826; p = 0.023). Also, the evaluation of the allele distributions of the polymorphism under the additive genetic model in the myopia group showed that the ZNF676 rs412658 T allele was associated with similar odds of high myopia (OR = 0.269; 95% CI: 0.090-0.807; p = 0.019). The comprehensive p-value, assessing the relative LTL of subjects across the different levels of myopia, signifies a statistical difference in the relative LTL among individuals with varying degrees of myopia. There was a statistically significant difference in relative LTL between mild and moderate myopia degrees (0.819 (1.983) vs. 0.083 (0.930), p = 0.007). CONCLUSIONS: CTC1 rs3027234 TT may be considered a protective genotype for telomere shortening in men, while the overall telomere shortening might be linked to the worse myopia degree. The ZNF676 rs412658 T allele may protect against a high myopia occurrence.

16.
Sleep Med ; 117: 18-24, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493659

RESUMO

BACKGROUND: The relationships between sleep duration and aging-associated diseases are intricate. Leukocyte telomere length (LTL) is a biomarker of aging, while the association of sleep duration and LTL is unclear. METHODS: The 310,091 study participants from UK Biobank were enrolled in this cross-sectional study. Restricted cubic splines (RCS) analysis was firstly performed to assess the nonlinear relationship between sleep duration and LTL. Sleep duration was then categorized into three groups: <7 h (short sleep duration), 7-8 h (reference group), and >8 h (long sleep duration) and multiple linear regression was applied to analyze the association of short sleep and long sleep duration with LTL. We further performed subgroup analyses stratified by sex, age, chronotype and snoring. RESULTS: RCS showed an inverted J-shaped relationship between sleep duration and LTL. Compared with the reference group, the inverse association of long sleep duration and LTL was statistically significant in fully-adjusted model (P = 0.001). Subgroup analyses showed that this association was more apparent in people over 50 years (51-60 y: P = 0.002; >60 y: P = 0.005), in men (P = 0.022), and in people preferred evening chronotype (P = 0.001). CONCLUSION: Compared with participants sleeping 7-8 h, those sleep longer than 8 h had shorter LTL in middle-aged and young-old adults. The negative association between long sleep duration and LTL was more apparent in older people, in men, and in people preferred evening chronotype.


Assuntos
Duração do Sono , Biobanco do Reino Unido , Pessoa de Meia-Idade , Adulto , Masculino , Humanos , Idoso , Estudos Transversais , Bancos de Espécimes Biológicos , Leucócitos , Telômero
17.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542917

RESUMO

BACKGROUND: Immunoglobulin G (IgG) N-glycosylation is considered a potential biomarker for aging and various pathological conditions. However, whether these changes in IgG N-glycosylation are a consequence or a contributor to the aging process remains unclear. This study aims to investigate the causality between IgG N-glycosylation and aging using Mendelian randomization (MR) analysis. METHODS: We utilized genetic variants associated with IgG N-glycosylation traits, the frailty index (FI), and leukocyte telomere length (LTL) from a previous genome-wide association study (GWAS) on individuals of European ancestry. Two-sample and multivariable MR analyses were conducted, employing the inverse-variance weighted (IVW) method. Sensitivity analyses were performed to assess potential confounding factors. RESULTS: Using the IVW method, we found suggestive evidence of a causal association between GP14 and FI (ß 0.026, 95% CI 0.003 to 0.050, p = 0.027) and LTL (ß -0.020, 95% CI -0.037 to -0.002, p = 0.029) in the two-sample MR analysis. In the multivariable MR analysis, suggestive evidence was found for GP23 and FI (ß -0.119, 95% CI -0.219 to -0.019, p = 0.019) and GP2 and LTL (ß 0.140, 95% CI 0.020 to 0.260, p = 0.023). CONCLUSIONS: In conclusion, our results supported a potentially causal effect of lower GP23 levels on an advanced aging state. Additional verification is required to further substantiate the causal relationship between glycosylation and aging.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Glicosilação , Imunoglobulina G/genética , Envelhecimento/genética
18.
Reprod Sci ; 31(6): 1601-1609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393627

RESUMO

Polycystic ovary syndrome (PCOS) is a multifactorial disorder and obesity occurs in 38% to 88% of these women. Although hyperandrogenism may contribute to telomere lengthening, increased body mass index (BMI) is associated with telomere erosion. We sought to compare leukocyte telomere length (LTL) in PCOS women with normal, overweight, and obese BMI. We evaluated the relationship between LTL and clinical variables of PCOS and inflammatory biomarkers independent of BMI. A total of 348 women (243 PCOS and 105 non-PCOS) were evaluated for anthropometric measures, total testosterone, androstenedione, estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), free androgen index (FAI), fasting insulin and glycemia, lipid profile, homocysteine, C-reactive protein (CRP) and homeostatic model of insulin resistance (HOMA-IR). LTL was measured by qPCR. The PCOS group presented higher weight, waist circumference, BMI, testosterone, LH, fasting insulin, FAI, and HOMA-IR, and lower E2, SHBG, and fasting glycemia measures compared with the non-PCOS. When stratified by BMI, LTL was increased in all subgroups in PCOS compared to non-PCOS. However, in the PCOS group, LTL was lower in overweight (P = 0.0187) and obese (P = 0.0018) compared to normal-weight women. The generalized linear model showed that BMI, androstenedione, homocysteine, and CRP were associated with telomere biology. Women with PCOS had longer LTL, however, overweight or obesity progressively contributes to telomere shortening and may affect reproductive outcomes of PCOS, while androstenedione may increase LTL.


Assuntos
Índice de Massa Corporal , Obesidade , Síndrome do Ovário Policístico , Encurtamento do Telômero , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Feminino , Obesidade/genética , Obesidade/sangue , Adulto , Adulto Jovem , Resistência à Insulina , Telômero/metabolismo , Leucócitos/metabolismo , Biomarcadores/sangue
19.
medRxiv ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196645

RESUMO

Beyond mere prognostication, optimal biomarkers of aging provide insights into qualitative and quantitative features of biological aging and might, therefore, offer useful information for the testing and, ultimately, clinical use of gerotherapeutics. We aimed to develop a proteomic aging clock (PAC) for all-cause mortality risk as a proxy of biological age. Data were from the UK Biobank Pharma Proteomics Project, including 53,021 participants aged between 39 and 70 years and 2,923 plasma proteins assessed using the Olink Explore 3072 assay®. The Spearman correlation between PAC proteomic age and chronological age was 0.77. A total of 10.9% of the participants died during a mean follow-up of 13.3 years, with the mean age at death 70.1 years. We developed a proteomic aging clock (PAC) for all-cause mortality risk as a surrogate of BA using a combination of least absolute shrinkage and selection operator (LASSO) penalized Cox regression and Gompertz proportional hazards models. PAC showed robust age-adjusted associations and predictions for all-cause mortality and the onset of various diseases in general and disease-free participants. The proteins associated with PAC were enriched in several processes related to the hallmarks of biological aging. Our results expand previous findings by showing that age acceleration, based on PAC, strongly predicts all-cause mortality and several incident disease outcomes. Particularly, it facilitates the evaluation of risk for multiple conditions in a disease-free population, thereby, contributing to the prevention of initial diseases, which vary among individuals and may subsequently lead to additional comorbidities.

20.
Geroscience ; 46(2): 1947-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37782440

RESUMO

Shorter leukocyte telomere length (LTL) is associated with cardiovascular dysfunction. Whether this association differs between measured and genetically predicted LTL is still unclear. Moreover, the molecular processes underlying the association remain largely unknown. We used baseline data of the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany [56.2% women, age: 55.5 ± 14.0 years (range 30 - 95 years)]. We calculated genetically predicted LTL in 4180 participants and measured LTL in a subset of 1828 participants with qPCR. Using multivariable regression, we examined the association of measured and genetically predicted LTL, and the difference between measured and genetically predicted LTL (ΔLTL), with four vascular functional domains and the overall vascular health. Moreover, we performed epigenome-wide association studies of three LTL measures. Longer measured LTL was associated with better microvascular and cardiac function. Longer predicted LTL was associated with better cardiac function. Larger ΔLTL was associated with better microvascular and cardiac function and overall vascular health, independent of genetically predicted LTL. Several CpGs were associated (p < 1e-05) with measured LTL (n = 5), genetically predicted LTL (n = 8), and ΔLTL (n = 27). Genes whose methylation status was associated with ΔLTL were enriched in vascular endothelial signaling pathways and have been linked to environmental exposures, cardiovascular diseases, and mortality. Our findings suggest that non-genetic causes of LTL contribute to microvascular and cardiac function and overall vascular health, through an effect on the vascular endothelial signaling pathway. Interventions that counteract LTL may thus improve vascular function.


Assuntos
Leucócitos , Telômero , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Estudos de Coortes , Estudos Longitudinais , Fenótipo , Leucócitos/metabolismo , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...