Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 126888, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709217

RESUMO

Limnocharis flava is a noxious aquatic weed that poses a threat to paddy cultivation. The high cellulose and low lignin contents in this plant make it a potential raw material for papermaking. Against this backdrop, this study was taken up to develop Limnocharis flava (LF) based sheets containing natural fibres from Banana (B), Pineapple (P), and Rice Straw (RS) as reinforcing agents. The influence of carboxymethyl cellulose (CMC) as a binder on the LF-based sheets was also studied. To enhance the mechanical and moisture resistance properties, a chitosan coating was provided to the sheets. Analytical tests for mechanical properties, water barrier properties, functional groups, structure and microstructure, thermal properties and biodegradability were performed. Among the samples, LF + B showed the highest tensile strength (34.86 Mpa) and bursting strength (13.055 kg/cm2), while LF + R had higher puncture and tearing strengths. Chitosan coating was found to enhance the sheets and improve the water barrier properties mechanically. The contact angle of LF + B increased from 91.6° to 110.65°, while the water vapour transmission rate of LF reduced from 532.18 to 404.47 on providing chitosan coating. The significant interactions of reinforcing agents were confirmed by the results of FTIR and that of the coating by the SEM micrographs. The LF-based sheets were also found to have decent thermal stability. The high value of the crystallinity index in LF + R samples supported their remarkable mechanical properties. This study proclaims the notable suitability of Limnocharis flava in manufacturing paper for packaging applications.


Assuntos
Quitosana , Quitosana/química , Madeira , Celulose/química , Lignina , Embalagem de Alimentos , Resistência à Tração
2.
Physiol Mol Biol Plants ; 27(5): 969-983, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34108823

RESUMO

Limnocharis flava (L.) Buchenau is a problematic weed in rice fields and water canals of Southeast Asia, and in Malaysia this invasive aquatic weed species has evolved multiple resistance to synthetic auxin herbicide and acetohydroxyacid synthase (AHAS) inhibitors. In this study, it was revealed that, a single nucleotide polymorphism (SNP) at amino acid position 376, where C was substituted to G at the third base of the same codon (GAC to GAG), resulting in Aspartate (Asp) substitution by Glutamate (Glu) was the contributing resistance mechanism in the L. flava population to AHAS inhibitors. In vitro assay further proved that, all the L. flava individuals carrying AHAS resistance mutation exhibited decreased-sensitivity to AHAS inhibitors at the enzyme level. In the bensulfuron-methyl whole-plant bioassay, high resistance indices (RI) of 328- and 437-fold were recorded in the absence and presence of malathion (the P450 inhibitor), respectively. Similarly, translocation and absorption of bensulfuron-methyl in both resistant and susceptible L. flava populations showed no remarkable differences, hence eliminated the possible co-existence of non-target-site resistance mechanism in the resistant L. flava. This study has confirmed another new case of a target-site resistant weed species to AHAS-inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...