Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Invest New Drugs ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305365

RESUMO

Despite available treatments for acute lymphoblastic leukemia (ALL), the disease's high clinical variability necessitates new therapeutic strategies, particularly for patients with high-risk features. The tumor suppressor protein p53, encoded by the TP53 gene and known as the guardian of the genome, plays a crucial role in preventing tumor development. Over 90% of ALL cases initially harbor wild-type TP53. Reactivation of p53, which is encoded from the wild type TP53 but lost its function for several reasons, is an attractive therapeutic approach in cancer treatment. p53 can be activated in a non-genotoxic manner by targeting its primary repressor, the MDM2 protein. Clinical trials involving MDM2 inhibitors are currently being conducted in a growing body of investigation, reflecting of the interest in incorporating these treatments into cancer treatment strategies. Early-phase clinical trials have demonstrated the promise of idasanutlin (RG7388), one of the developed compounds. It is a second-generation MDM2-p53 binding antagonist with enhanced potency, selectivity, and bioavailability. The aim of this study is to evaluate the efficacy of RG7388 as a therapeutic strategy for ALL and to investigate its potential impact on improving treatment outcomes for high-risk patients. RG7388 potently decreased the viability in five out of six ALL cell lines with diverse TP53 mutation profiles, whereas only one cell line exhibited high resistance. RG7388 induced a pro-apoptotic gene expression signature with upregulation of p53-target genes involved in the intrinsic and extrinsic pathways of apoptosis. Consequently, RG7388 led to a concentration-dependent increase in caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase. In this research, RG7388 was investigated with pre-clinical methods in ALL cells as a novel treatment strategy. This study suggests further functional research and in-vivo evaluation, and it highlights the prospect of treating p53-functional ALL with MDM2 inhibitors.

2.
Biomedicines ; 12(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39061962

RESUMO

Chronic lymphocytic leukemia (CLL) is a genetically and clinically diverse hematological cancer affecting middle-aged and elderly individuals. Novel targeted therapy options are needed for patients who relapse following initial responses or who are intrinsically resistant to current treatments. There is a growing body of investigation currently underway on MDM2 inhibitors in clinical trials, reflecting the increasing interest in including these drugs in cancer treatment regimens. One of the developed compounds, idasanutlin (RG7388), has shown promise in early-stage clinical trials. It is a second-generation MDM2-p53-binding antagonist with enhanced potency, selectivity, and bioavailability. In addition to the TP53 status, which is an important determinant of the response, we have shown in our previous studies that the SF3B1 mutational status is also an independent predictive biomarker of the ex vivo CLL patient sample treatment response to RG7388. The objective of this study was to identify novel biomarkers associated with resistance to RG7388. Gene set enrichment analysis of differentially expressed genes (DEGs) between RG7388-sensitive and -resistant CLL samples showed that the increased p53 activity led to upregulation of pro-apoptosis pathway genes while DNA damage response pathway genes were additionally upregulated in resistant samples. Furthermore, differential expression of certain genes was detected, which could serve as the backbone for novel combination treatment approaches. This research provides preclinical data to guide the exploration of drug combination strategies with MDM2 inhibitors, leading to future clinical trials and associated biomarkers that may improve outcomes for CLL patients.

3.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511096

RESUMO

Chronic lymphocytic leukemia (CLL) is a genetically and clinically heterogeneous malignancy affecting older individuals. There are a number of current treatment options for CLL, including monoclonal antibodies, targeted drugs, chemotherapy, and different combinations of these. However, for those patients who are intrinsically treatment resistant, or relapse following initial responses, novel targeted therapies are still needed. Targeting the mouse double-minute-2 human homolog (MDM2), a primary negative regulator of p53, is an appealing therapeutic strategy for non-genotoxic reactivation of p53, since the TP53 gene is in its wild-type state at diagnosis in approximately 90% of patients. Mutated SF3B1 and TP53 are both associated with more aggressive disease, resistance to therapies and poorer overall survival for CLL. In this study, we performed a screen for SF3B1 and TP53 mutations and tested RG7388 (idasanutlin), a second-generation MDM2 inhibitor, in a cohort of CLL primary patient samples. SF3B1 mutations were detected in 24 of 195 cases (12.3%) and found associated with poor overall survival (hazard ratio [HR] 2.12, p = 0.032) and high CD38 expression (median CD38 (%) 32 vs. 5; p = 0.0087). The novel striking finding of this study was an independent link between SF3B1 mutational status and poor response to RG7388. Overall, SF3B1 mutations in CLL patient samples were associated with resistance to treatment with RG7388 ex vivo, and patients with the wild type for both SF3B1 and TP53 are more likely to benefit from treatment with MDM2 inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Mutação , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Fatores de Processamento de RNA/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768733

RESUMO

Several molecular subtypes of cancer are highly dependent on splicing for cell survival. There is a general interest in the therapeutic targeting of splicing by small molecules. E7107, a first-in-class spliceosome inhibitor, showed strong growth inhibitory activities against a large variety of human cancer xenografts. Chronic lymphocytic leukaemia (CLL) is a clinically heterogeneous hematologic malignancy, with approximately 90% of cases being TP53 wild-type at diagnosis. An increasing number of studies are evaluating alternative targeted agents in CLL, including MDM2-p53 binding antagonists. In this study, we report the effect of splicing modulation on key proteins in the p53 signalling pathway, an important cell death pathway in B cells. Splicing modulation by E7107 treatment reduced full-length MDM2 production due to exon skipping, generating a consequent reciprocal p53 increase in TP53WT cells. It was especially noteworthy that a novel p21WAF1 isoform with compromised cyclin-dependent kinase inhibitory activity was produced due to intron retention. E7107 synergized with the MDM2 inhibitor RG7388, via dual MDM2 inhibition; by E7107 at the transcript level and by RG7388 at the protein level, producing greater p53 stabilisation and apoptosis. This study provides evidence for a synergistic MDM2 and spliceosome inhibitor combination as a novel approach to treat CLL and potentially other haematological malignancies.


Assuntos
Antineoplásicos , Linfócitos B , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/farmacologia , Apoptose/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linfócitos B/metabolismo
5.
Curr Drug Targets ; 20(11): 1091-1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947669

RESUMO

MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteína Supressora de Tumor p53/genética
6.
Oncotarget ; 7(26): 40115-40134, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223080

RESUMO

Ovarian cancer is the fifth leading cause of cancer-related female deaths. Due to serious side effects, relapse and resistance to standard chemotherapy, better and more targeted approaches are required. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies, non-genotoxic activation of wild-type p53 by small molecule inhibition of the MDM2-p53 binding interaction is a promising therapeutic strategy. Proof of concept was established with the cis-imidazoline Nutlin-3, leading to the development of RG7388 and other compounds currently in early phase clinical trials. This preclinical study evaluated the effect of Nutlin-3 and RG7388 as single agents and in combination with cisplatin in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3 or RG7388 combination with cisplatin was additive to, or synergistic in a p53-dependent manner, resulting in increased p53 activation, cell cycle arrest and apoptosis, associated with increased p21WAF1 protein and/or caspase-3/7 activity compared to cisplatin alone. Although MDM2 inhibition activated the expression of p53-dependent DNA repair genes, the growth inhibitory and pro-apoptotic effects of p53 dominated the response. These data indicate that combination treatment with MDM2 inhibitors and cisplatin has synergistic potential for the treatment of ovarian cancer, dependent on cell genotype.


Assuntos
Cisplatino/farmacologia , Imidazóis/farmacologia , Neoplasias Ovarianas/patologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , para-Aminobenzoatos/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Neoplasias Ovarianas/tratamento farmacológico
7.
Oncotarget ; 6(12): 10207-21, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25844600

RESUMO

Neuroblastoma is a predominantly p53 wild-type (wt) tumour and MDM2-p53 antagonists offer a novel therapeutic strategy for neuroblastoma patients. RG7388 (Roche) is currently undergoing early phase clinical evaluation in adults. This study assessed the efficacy of RG7388 as a single-agent and in combination with chemotherapies currently used to treat neuroblastoma in a panel of neuroblastoma cell lines. RG7388 GI50 concentrations were determined in 21 p53-wt and mutant neuroblastoma cell lines of varying MYCN, MDM2 and p14(ARF) status, together with MYCN-regulatable Tet21N cells. The primary determinant of response was the presence of wt p53, and overall there was a >200-fold difference in RG7388 GI50 concentrations for p53-wt versus mutant cell lines. Tet21N MYCN+ cells were significantly more sensitive to RG7388 compared with MYCN- cells. Using median-effect analysis in 5 p53-wt neuroblastoma cell lines, selected combinations of RG7388 with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic. Furthermore, combination treatments led to increased apoptosis, as evident by higher caspase-3/7 activity compared to either agent alone. These data show that RG7388 is highly potent against p53-wt neuroblastoma cells, and strongly supports its further evaluation as a novel therapy for patients with high-risk neuroblastoma and wt p53 to potentially improve survival and/or reduce toxicity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , para-Aminobenzoatos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , para-Aminobenzoatos/administração & dosagem
8.
Front Oncol ; 2: 173, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226679

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...