Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 21(1): 30-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151289

RESUMO

BACKGROUND/AIM: Metastatic lymph node 64 (MLN64) is often co-amplified with ERBB2 (HER2) and plays a role in the progression of breast and prostate cancer. The present study explored the expression of MLN64 in clinical gastric cancer in association with the ERBB family and its impact on drug resistance in patients. MATERIALS AND METHODS: Two independent gastric cancer cohorts (n=324; n=87) were used to explore the expression profile of MLN64 in conjunction with ERBB family members in clinical gastric cancer and its association with neoadjuvant chemotherapy responses. Gastric cancer AGS and HCG27 cells with MLN64 knockdown were generated to determine the function of MLN64 in cell behavioural changes. RESULTS: Gastric tumor tissues expressed significantly higher levels of MLN64 compared with normal tissues (p<0.01); however, MLN64 alone was a weak prognostic indicator. An integrated co-expression of MLN64, ERBB4, and NRG4 was a significant factor in assessing overall survival in both cohorts. MLN64 was a profound indicator of patient response to neoadjuvant chemotherapy. In vitro studies indicated a significant contribution of MLN64 to the response of gastric cancer cells to chemodrugs and Her-2 inhibitors. MLN64 knockdown also contributed to the adhesion and migration and suggested a possible mechanism mediated by the interaction between MLN64 and ERBBs. CONCLUSION: MLN64 is an indicator of patient response to neoadjuvant chemotherapy in gastric cancer. Together with the expression pattern of ERBB4, MLN64 is a poor prognostic factor for patients with gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Masculino , Resistência a Medicamentos , Linfonodos , Prognóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
2.
Am J Cancer Res ; 13(11): 5151-5173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058811

RESUMO

Although various HER2-targeted therapies have been approved clinically, drug resistance remains a considerable challenge. Studies have found that the cause of drug resistance is related to the expression of genes co-amplified with HER2 in breast cancer cells. Our study found that STARD3 was highly expressed in tumor tissues (n = 130, P < 0.001), especially in the HER2+ subtype (n = 35, P < 0.05), and correlated with poorer overall survival (HR = 1.47, P < 0.001). We discovered the interaction mechanism between STARD3 and HER2 proteins. We found that STARD3 overexpression increases HER2 levels by directly interacting with the HSP90 protein and inducing phosphorylated SRC, which may protect HER2 from degradation. Conversely, loss of STARD3 attenuates HER2 expression through lysosomal degradation. In addition, STARD3 overexpression induced cell cycle progression by inducing cyclin D1 and reducing p27. Therefore, the development of STARD3-specific targeted anti-cancer drugs would be helpful in the treatment of HER2+ patients. We further found that curcumin (15 µM) is a potent STARD3 inhibitor. STARD3-knockdown cells treated with curcumin (5 µM) showed a significant synergistic effect in inhibiting cancer cell growth and migration. The results suggest that targeting STARD3 would aid in treating HER2-positive breast cancer patients. This article uses curcumin as an example to prove that the targeted inhibition of STARD3 expression can be an option for the clinical treatment of HER2+ breast cancer patients.

3.
Exp Cell Res ; 429(2): 113668, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245582

RESUMO

The close apposition between two different organelles is critical in essential processes such as ion homeostasis, signaling, and lipid transition. However, information related to the structural features of membrane contact sites (MCSs) is limited. This study used immuno-electron microscopy and immuno-electron tomography (I-ET) to analyze the two- and three-dimensional structures of the late endosome-mitochondria contact sites in placental cells. Filamentous structures or tethers were identified that connected the late endosomes and mitochondria. Lamp1 antibody-labeled I-ET revealed enrichment of tethers in the MCSs. The cholesterol-binding endosomal protein metastatic lymph node 64 (MLN64) encoded by STARD3 was required for the formation of this apposition. The distance of the late endosome-mitochondria contact sites was <20 nm, shorter than that in STARD3-knockdown cells (<150 nm). The perturbation of cholesterol egress from the endosomes induced by U18666A treatment produced a longer distance in the contact sites than that in knockdown cells. The late endosome-mitochondria tethers failed to form correctly in STARD3-knockdown cells. Our results unravel the role of MLN64 involved in MCSs between late endosomes and mitochondria in placental cells.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Feminino , Gravidez , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Placenta/metabolismo , Mitocôndrias/metabolismo , Endossomos/metabolismo , Membranas Mitocondriais/metabolismo , Colesterol/metabolismo
4.
Biochem Biophys Res Commun ; 505(4): 1228-1235, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30322615

RESUMO

Diabetes mellitus is known as a main cause to induce osteoporosis. However, the pathogenesis of osteoporosis induced by diabetes has not been fully understood. MLN64 is highly homologous to the steroidogenic acute regulatory (STAR) protein, sharing the highly conserved START domain and exhibiting various biological activities. In the study, we attempted to explore the role of MLN64 in osteoporosis progression through the in vitro and in vivo studies. At first, the in vitro study suggested that MLN64 was over-expressed during the osteoclast differentiation induced by receptor activator of NF-kB ligand (RANKL). MLN64-knockdown markedly reduced the number of TRAP-positive multinucleated cells induced by RANKL, along with the down-regulation of specific genes related to osteoclastogenesis, including tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells (NFATc1), cathepsin K (CTSK), tartrate resistant (ACP5) and c-FOS and up-regulation of transcriptional receptor runt related transcription factor 2 (Runx2) and osteopontin (OPN). In contrast, over-expressing MLN64 significantly promoted the production of TRAP-positive multinucleated cells triggered by RANKL. Moreover, RANKL exposure led to remarkable increase in inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and MMP-1, which was attenuated by the knockdown of MLN64. Additionally, the expression of phosphorylated (p)IKKα, p-IκBα and p-nuclear factor (NF)-κB stimulated by RANKL was clearly alleviated by MLN64 silence. However, RANKL-induced inflammation was accelerated by MLN64 over-expression. Further, the in vivo study suggested that streptozotocin (STZ)-caused reduction in body weight of mice was improved by the loss of MLN64. STZ-induced diabetic mice exhibited higher levels of blood alkaline phosphatase (ALP) and TRAP, while being down-regulated in MLN64-knockout mice. MLN64 deletion reversed STZ-induced trabecular deleterious effects and stimulated bone remodeling. What's more, MLN64 knockout inhibited the expression levels of TRAP, RANKL and RANK in femoral heads of STZ mice, accompanied with the repression of inflammatory response. In conclusion, the results in our study suggested that MLN64 played a critical role in the meditation of osteoclastic differentiation, and its suppression alleviated diabetic osteoporosis in STZ-induced mice. Thus, MLN64 could be served as an essential target for developing effective therapeutic strategy to prevent diabetic osteoporosis.


Assuntos
Diabetes Mellitus Experimental/complicações , Osteoclastos/metabolismo , Osteoporose/etiologia , Fosfoproteínas/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligante RANK/farmacologia
5.
J Bioenerg Biomembr ; 48(2): 137-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25425472

RESUMO

Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfoproteínas/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Colesterol/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/genética , Fosfoproteínas/genética
6.
Steroids ; 103: 11-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26435077

RESUMO

The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.


Assuntos
Colesterol/metabolismo , Mitocôndrias/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , Feminino , Humanos , Gravidez
7.
J Cell Sci ; 126(Pt 23): 5500-12, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105263

RESUMO

Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Transporte Biológico , Proteínas de Transporte/genética , Retículo Endoplasmático/ultraestrutura , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas de Transporte Vesicular/genética
8.
Mol Cell Endocrinol ; 380(1-2): 89-98, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23707789

RESUMO

Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function.


Assuntos
Glucocorticoides/biossíntese , Homeostase , Glândulas Suprarrenais/metabolismo , Animais , Encéfalo/metabolismo , Sistema Cardiovascular/citologia , Sistema Cardiovascular/metabolismo , Epitélio/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Pulmão/citologia , Pulmão/metabolismo , Pele/citologia , Pele/metabolismo , Timo/metabolismo
9.
Mol Cell Endocrinol ; 379(1-2): 62-73, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23628605

RESUMO

Mitochondria are essential sites for steroid hormone biosynthesis. Mitochondria in the steroidogenic cells of the adrenal, gonad, placenta and brain contain the cholesterol side-chain cleavage enzyme, P450scc, and its two electron-transfer partners, ferredoxin reductase and ferredoxin. This enzyme system converts cholesterol to pregnenolone and determines net steroidogenic capacity, so that it serves as the chronic regulator of steroidogenesis. Several other steroidogenic enzymes, including 3ß-hydroxysteroid dehydrogenase, 11ß-hydroxylase and aldosterone synthase also reside in mitochondria. Similarly, the mitochondria of renal tubular cells contain two key enzymes participating in the activation and degradation of vitamin D. The access of cholesterol to the mitochondria is regulated by the steroidogenic acute regulatory protein, StAR, serving as the acute regulator of steroidogenesis. StAR action requires a complex multi-component molecular machine on the outer mitochondrial membrane (OMM). Components of this machine include the 18 kDa translocator protein (TSPO), the voltage-dependent anion chanel (VDAC-1), TSPO-associated protein 7 (PAP7, ACBD3), and protein kinase A regulatory subunit 1α (PKAR1A). The precise fashion in which these proteins interact and move cholesterol from the OMM to P450scc, and the means by which cholesterol is loaded into the OMM, remain unclear. Human deficiency diseases have been described for StAR and for all the mitochondrial steroidogenic enzymes, but not for the electron transfer proteins or for the components of the cholesterol import machine.


Assuntos
Corticosteroides/biossíntese , Hormônios Esteroides Gonadais/biossíntese , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Hormônios Placentários/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transporte Biológico/fisiologia , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Fosfoproteínas/metabolismo , Pregnenolona/biossíntese , Receptores de GABA/metabolismo , Vitamina D/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...