Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.275
Filtrar
1.
J Cell Mol Med ; 28(19): e70132, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350724

RESUMO

Aging is a risk factor for various human disorders, including cancer. Current literature advocates that the primary principles of aging depend on the endogenous stress-induced DNA damage caused by reactive oxygen species 50 Hz low-frequency magnetic field was suggested to induce DNA damage and chromosomal instability. NF-kB, activated by DNA damage, is upregulated in age-related cancers and inhibition of NF-kB results in aging-related delayed pathologies. Metformin (Met), an NF-kB inhibitor, significantly reduces both NF-kB activation and expression in aging and cancer. This in vitro study, therefore, was set out to assess the effects of 5mT MF in 50 Hz frequency and Met treatment on the viability and proliferation of aged mouse NIH/3T3 fibroblasts and expression of RELA/p65, matrix metalloproteinases MMP2 and MMP9, and E-cadherin (CDH1) genes. The trypan blue exclusion assay was used to determine cell viability and the BrdU incorporation assay to determine cell proliferation. The MMP-2/9 protein analysis was carried out by immunocytochemistry, NF-kB activity by ELISA and the expressions of targeted genes by qRT-PCR methods. Four doses of Met (500 uM, 1 mM, 2 mM and 10 mM) suppressed both the proliferation and viability of fibroblasts exposed to the MF in a dose-dependent pattern, and the peak inhibition was recorded at the 10 mM dose. Met reduced the expression of NF-kB, and MMP2/9, elevated CDH1 expression and suppressed NF-kB activity. These findings suggest that Met treatment suppresses the carcinogenic potential of 50 Hz MFs in aged mouse fibroblasts, possibly through modulation of NF-kB activation and epithelial-mesenchymal transition modulation.


Assuntos
Proliferação de Células , Sobrevivência Celular , Fibroblastos , Campos Magnéticos , Metformina , NF-kappa B , Animais , Metformina/farmacologia , Camundongos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células NIH 3T3 , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Fator de Transcrição RelA/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Caderinas/metabolismo , Caderinas/genética , Senescência Celular/efeitos dos fármacos
2.
Biol Trace Elem Res ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358579

RESUMO

Yak (Bos grunniens) is the only large mammal species in the Qinghai-Tibet Plateau. The most of the studies in yak remain confined for the main contributor of meat, which requires a good understanding of muscle growth. Matrix metalloproteinases-2 (MMP-2) and MMP-9 are widely expressed in mammal tissues they mainly degrade collagen in the extracellular matrix for muscle development. However, the influence of MMPs on yak muscle remains unclear. Hence, we assessed the expression of MMP-2, MMP-9, and related factors with ages in Maiwa yak for study the correlation between MMPs expression and yak muscle growth. The mRNA expression of MMP-2, MMP-9, MMP-14, and collagen III increased with age, except collagen I by quantitative real-time PCR. Moreover, muscle fiber diameter increased with age, whereas the density decreased, which showed that fiber grew thicker with age using hematoxylin-eosin staining. Interestingly, MMP and collagen expression significantly decreased with age using western blotting. Pearson correlation method showed that both mRNA and protein expression of MMP-14 and collagen were strongly correlated with muscle fiber growth, but MMP-2 protein and MMP-9 mRNA expression were moderately correlated with muscle fiber growth. Overall, the expression of MMPs and collagen significantly changed with age, which means that MMPs and their function related genes could correlate with Maiwa yak muscle fiber growth.

3.
J Ophthalmic Vis Res ; 19(3): 273-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359528

RESUMO

Purpose: Sulfur mustard (SM) is a potent blistering agent. This alkylating chemical agent has extremely toxic effects on the eye. MMP-2 and MMP-9 are the two most important matrix metalloproteinase enzymes involved in the pathology of chemical eye injuries. Curcumin is regarded as a natural anti-inflammatory agent. This study aims to compare the anti-inflammatory effects of curcumin versus doxycycline on chemically induced corneal injuries. Methods: The HCE-2 cell line was used as a model for corneal cells. The effective concentrations of 2-chloroethyl ethyl sulfide (CEES) - as an analog of SM - doxycycline, and curcumin were determined using the MTT assay. The gene expression of MMP-2, MMP-9, and tissue inhibitors of metalloproteinase (TIMP-1) was evaluated by the real-time PCR method. Also, the activity of MMP-2 and MMP-9 enzymes was determined by zymography. Results: The expression of the MMP-2 and MMP-9 genes increased 5- and 3.3-fold after exposure to CEES, respectively. Following the treatment with curcumin and doxycycline, MMP-2 expression decreased significantly. Also, after treatment with curcumin and doxycycline, the MMP-9 expression decreased 2.5- and 1.6-fold, respectively. The reduction in activity was 32% for MMP-2 and 56% for MMP-9 after treatment with curcumin. The corresponding values were 12% and 40% following doxycycline treatment. There was no significant difference between the effects of curcumin and doxycycline on reducing MMP-2 expression, but the difference was statistically significant in the case of MMP-9. Conclusion: Doxycycline and curcumin can inhibit MMP expression and activity in chemically exposed corneal cells. Curcumin has a greater ability than doxycycline to inhibit MMP-2 and MMP-9 enzymes; however, the difference is statistically significant only in the case of MMP-9. After further validation, these substances can be introduced as anti- inflammatory agents to treat corneal chemical burns.

4.
Acta Pharm Sin B ; 14(9): 4102-4117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309485

RESUMO

Tumor vaccine, a promising modality of tumor immunotherapy, needs to go through the process of tumor antigen generation and loading, antigen drainage to lymph nodes (LNs), antigen internalization by dendritic cells (DCs), DC maturation, and antigen cross-presentation to activate T-cells. However, tumor vaccines are often unable to satisfy all the steps, leading to the limitation of their application and efficacy. Herein, based on a smart nanogel system, an in situ nano-vaccine (CpG@Man-P/Tra/Gel) targeting LNs was constructed to induce potent anti-tumor immune effects and inhibit the recurrence and metastasis of ovarian cancer. The CpG@Man-P/Tra/Gel exhibited MMP-2-sensitive release of trametinib (Tra) and nano-adjuvant CPG@Man-P, which generated abundant in situ depot of whole-cell tumor antigens and formed in situ nano-vaccines with CpG@Man-P. Benefiting from mannose (Man) modification, the nano-vaccines targeted to LNs, promoted the uptake of antigens by DCs, further inducing the maturation of DCs and activation of T cells. Moreover, CpG@Man-P with different particle sizes were prepared and the effective size was selected to evaluate the antitumor effect and immune response in vivo. Notably, combined with PD-1 blocking, the vaccine effectively inhibited primary tumor growth and induced tumor-specific immune response against tumor recurrence and metastasis of ovarian cancer.

5.
Biomolecules ; 14(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39334904

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) involves myocardial remodeling, characterized by significant fibrosis and extracellular matrix expansion. These changes impair heart function, increasing the risk of heart failure and sudden cardiac death. This study investigates the prognostic value of circulating fibrosis biomarkers as a less invasive method in DCM patients. METHODS: Plasma samples from 185 patients with confirmed DCM were analyzed to measure 13 circulating biomarkers using Luminex bead-based multiplex assays and ELISA. The prognostic value of these biomarkers was evaluated concerning heart failure-associated events and all-cause mortality. RESULTS: Elevated MMP-2 levels (>1519.3 ng/mL) were linked to older age, higher diabetes prevalence, lower HDL, increased NT-proBNP and hs-TnT levels, and severe systolic dysfunction. High TIMP-1 levels (>124.9 ng/mL) correlated with elevated NT-proBNP, more atrial fibrillation, reduced exercise capacity, and larger right ventricles. Increased GDF-15 levels (>1213.9 ng/mL) were associated with older age, systemic inflammation, renal impairment, and poor exercise performance. Elevated OPN levels (>81.7 ng/mL) were linked to higher serum creatinine and NT-proBNP levels. Over a median follow-up of 32.4 months, higher levels of these biomarkers predicted worse outcomes, including increased risks of heart failure-related events and mortality. CONCLUSIONS: Circulating fibrosis biomarkers, particularly MMP-2, TIMP-1, GDF-15, and OPN, are valuable prognostic tools in DCM. They reflect the severity of myocardial remodeling and systemic disease burden, aiding in risk stratification and therapeutic intervention. Integrating these biomarkers into clinical practice could improve DCM management and patient prognosis.


Assuntos
Biomarcadores , Cardiomiopatia Dilatada , Fibrose , Fator 15 de Diferenciação de Crescimento , Osteopontina , Fragmentos de Peptídeos , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/diagnóstico , Masculino , Biomarcadores/sangue , Feminino , Pessoa de Meia-Idade , Prognóstico , Inibidor Tecidual de Metaloproteinase-1/sangue , Fibrose/sangue , Fator 15 de Diferenciação de Crescimento/sangue , Fragmentos de Peptídeos/sangue , Osteopontina/sangue , Idoso , Metaloproteinase 2 da Matriz/sangue , Peptídeo Natriurético Encefálico/sangue , Adulto , Insuficiência Cardíaca/sangue
6.
Ecotoxicol Environ Saf ; 285: 117016, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288732

RESUMO

Arsenic is a widespread environmental contaminant known to accumulate in the brain, leading to cognitive impairment. However, the exact mechanisms by which arsenic causes cognitive deficits remain unclear. The present study aims to discover whether the destruction of the blood-brain barrier (BBB) mediated by matrix metalloproteinases 2 and matrix metalloproteinases 9 (MMP-2 and MMP-9) and subsequent neuronal apoptosis are involved in arsenic-induced cognitive impairment. Ninety male mice were given 0, 25, and 50 mg/L NaAsO2 in drinking water and 30 mg/kg doxycycline hyclate (DOX, an inhibitor of MMPs) gavage for 12 weeks to observe the alterations in learning and memory of mice, the morphology of hippocampal neurons, as well as the BBB permeability and ultrastructure, the localization and expression of tight junction proteins, MMP-2, and MMP-9. Our findings indicated that arsenic exposure induced learning and memory impairment in mice, accompanied by neuronal loss and apoptosis. Furthermore, arsenic exposure increased hematogenous IgG leakage into the brain, disrupted the tight junctions, reduced the expression of Claudin5, Occludin, and ZO1 in the endothelial cells, and increased the expression of MMP-2 and MMP-9 in the endothelial cells and astrocytes. Finally, DOX intervention preserved BBB integrity, alleviated hippocampal neuronal apoptosis, and improved cognitive impairment in mice caused by arsenic exposure. Our research demonstrates that cognitive disfunction in mice induced by arsenic exposure is associated with MMP-2 and MMP-9-mediated BBB destruction and neuronal apoptosis. The current investigation provides new insights into mechanisms of arsenic neurotoxicity and suggests that MMP-2 and MMP-9 may serve as potential therapeutic targets for treating arsenic-induced cognitive dysfunction in the future.

7.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273357

RESUMO

Genetic factors play a significant role in the pathogenesis of mitral valve diseases, including mitral valve prolapse (MVP) and mitral valve regurgitation. Genes like Fibrillin-1 (FBN1), Filamin A (FLNA), matrix metalloproteinase 2 (MMP2), and SRY-box transcription factor 9 (SOX9) are known to influence mitral valve pathology but knowledge of the exact mechanism is far from clear. Data regarding serum parameters, transesophageal echocardiography, and genetic and histopathologic parameters were investigated in 54 patients who underwent cardiovascular surgery for mitral valve regurgitation. The possible association between Fibrillin-1, Filamin A, MMP2, and SOX9 gene expressions was checked in relationship with the parameters of systemic inflammatory response. The mRNA expression levels (RQ-relative quantification) were categorized into three distinct groups: low (RQ < 1), medium/normal (RQ = 1-2), and high (RQ > 2). Severe fibrosis of the mitral valve was reflected by high expression of FBN1 and low expression of MMP2 (p < 0.05). The myxoid degeneration level was associated with the mRNA expression level for FBN1 and a low lymphocyte-monocyte ratio was associated with an increased mRNA expression of FBN1 (p < 0.05). A high number of monocytes was associated with high values of FBN1 whereas the increase in the number of lymphocytes was associated with high levels of MMP2. In addition, we observed that the risk of severe hyalinization was enhanced by a low mRNA expression of FLNA and/or SOX9. In conclusion, a lower FLNA mRNA expression can reflect the aging process that is highlighted in mitral valve pathology as a higher risk for hyalinization, especially in males, that might be prevented by upregulation of the SOX9 gene. FBN1 and MMP2 influence the inflammation-related fibrotic degeneration of the mitral valve. Understanding the genetic base of mitral valve pathology can provide insights into disease mechanisms, risk stratification, and potential therapeutic targets.


Assuntos
Fibrilina-1 , Filaminas , Metaloproteinase 2 da Matriz , Valva Mitral , Fatores de Transcrição SOX9 , Humanos , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Filaminas/metabolismo , Filaminas/genética , Masculino , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Pessoa de Meia-Idade , Valva Mitral/patologia , Valva Mitral/metabolismo , Idoso , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/metabolismo , Prolapso da Valva Mitral/patologia , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/patologia , Adipocinas
8.
Drug Dev Res ; 85(6): e22255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233391

RESUMO

Overexpression of matrix metalloproteinase-2 (MMP-2) possesses a correlation with leukemia especially chronic myeloid leukemia (CML). However, no such MMP-2 inhibitor has come out in the market to date for treating leukemia. In this study, synthesis, biological evaluation, and molecular modeling studies of a set of biphenylsulfonamide derivatives as promising MMP-2 inhibitors were performed, focusing on their potential applications as antileukemic therapeutics. Compounds DH-18 and DH-19 exerted the most effective MMP-2 inhibition (IC50 of 139.45 nM and 115.16 nM, respectively) with potent antileukemic efficacy against the CML cell line K562 (IC50 of 0.338 µM and 0.398 µM, respectively). The lead molecules DH-18 and DH-19 reduced the MMP-2 expression by 21.3% and 17.8%, respectively with effective apoptotic induction (45.4% and 39.8%, respectively) in the K562 cell line. Moreover, both these compounds significantly arrested different phases of the cell cycle. Again, both these molecules depicted promising antiangiogenic efficacy in the ACHN cell line. Nevertheless, the molecular docking and molecular dynamics (MD) simulation studies revealed that DH-18 formed strong bidentate chelation with the catalytic Zn2+ ion through the hydroxamate zinc binding group (ZBG). Apart from that, the MD simulation study also disclosed stable binding interactions of DH-18 and MMP-2 along with crucial interactions with active site amino acid residues namely His120, Glu121, His124, His130, Pro140, and Tyr142. In a nutshell, this study highlighted the importance of biphenylsulfonamide-based novel and promising MMP-2 inhibitors to open up a new avenue for potential therapy against CML.


Assuntos
Antineoplásicos , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Metaloproteinase 2 da Matriz/metabolismo , Células K562 , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Talanta ; 281: 126795, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236519

RESUMO

This study introduces a novel electrochemical biosensor for detecting Matrix Metalloproteinase-2 (MMP-2), a key biomarker in cancer diagnostics and tissue remodeling. The biosensor is based on a dual-amplification strategy utilizing T7 RNA polymerase isothermal amplification and CRISPR-Cas12a technology. The principle involves the release of a DNA template in the presence of MMP-2, leading to RNA synthesis by T7 RNA polymerase. This RNA activates CRISPR-Cas12a, which cleaves a DNA probe on the electrode surface, resulting in a measurable electrochemical signal.The biosensor demonstrated exceptional sensitivity, with a detection limit of 2.62 fM for MMP-2. This high sensitivity was achieved through the combination of transcriptional amplification and the collateral cleavage activity of CRISPR-Cas12a, which amplifies the signal. The sensor was able to detect MMP-2 across a wide dynamic range from 2 fM to 1 nM, showing a strong linear correlation between MMP-2 concentration and the electrochemical signal. In practical applications, the biosensor accurately detected elevated levels of MMP-2 in cell culture supernatants from HepG2 liver cancer cells, distinguishing them from normal LO2 liver cells. The use of an MMP-2 inhibitor confirmed the specificity of the detection. These results underscore the biosensor's potential for clinical diagnostics, particularly in early cancer detection and monitoring of tissue remodeling activities. The biosensor's design allows for rapid, point-of-care testing without the need for complex laboratory equipment, making it a promising tool for personalized healthcare and diagnostic applications.

10.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108036

RESUMO

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Mapas de Interação de Proteínas , Receptores Fc/genética , Receptores Fc/metabolismo , Microambiente Tumoral/imunologia
11.
BMC Cancer ; 24(1): 1065, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210344

RESUMO

INTRODUCTION: Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are critical components of the extracellular matrix (ECM) in colorectal cancer (CRC). We aimed to evaluate the prognostic value of MMP-2 and MMP-9 in patients with CRC. METHODS: We performed a meta-analysis of cohort studies with available data on the effect of MMP-2 and MMP-9 expression on both disease-free survival (DFS) and overall survival (OS) by the risk ratios (RRs) with their 95% confidence intervals (CIs). Studies were subgrouped based on the different tissue types, including cancer tissue and normal tissue, and the subgroup effect of MMP expression in different tissues was analyzed through meta-regression. To ensure the quality and reduce the risk of bias, the Newcastle‒Ottawa Scale (NOS) was used to assess the included studies. A sensitivity analysis was randomly performed to assess the potential impact of each study on our results. RESULTS: Eighteen trials were selected (Table 1) and included a total of 3944 patients. According to our primary meta-analysis, the expression of MMP-2 was significantly associated with a decrease in OS (RR = 1.75, 95% CI = 1.34 to 2.29, P < 0.001) and DFS (RR = 2.62, 95% CI = 1.25 to 5.49, P < 0.001), and the expression of MMP-9 was not significantly associated with a decrease in OS (RR = 1.48, 95% CI = 0.97 to 2.24, P = 0.069) or DFS (RR = 1.60, 95% CI = 0.87 to 2.94, P = 0.133). According to the subgroup analysis of MMPs in different tissues, high MMP-2 expression in cancer tissue (RR = 1.90, 95% CI = 1.29 to 2.79) and normal tissue (RR = 1.59, 95% CI = 1.17 to 2.17) were significant indicators of poor OS. High MMP-2 expression in cancer tissue was significant indicator of poor DFS (RR = 2.12, 95% CI = 1.09 to 4.11). MMP-9 expression was also associated with poor OS (RR = 1.40, 95% CI = 0.85 to 2.29), but the difference in OS between the high and low expression groups was not statistically significant. CONCLUSIONS: High MMP-2 expression, especially in cancer tissue, is significantly associated with both poor DFS and poor OS in patients with CRC. High MMP-9 expression tended to indicate a poor prognosis of CRC but the correlation was not significant.


Assuntos
Neoplasias Colorretais , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Prognóstico
12.
SAR QSAR Environ Res ; 35(8): 665-692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39193767

RESUMO

MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to 'a basketball passing through a hoop' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3rd position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.


Assuntos
Inibidores de Metaloproteinases de Matriz , Pirrolidinas , Desenho de Fármacos , Ligantes , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Simulação de Dinâmica Molecular , Pirrolidinas/química , Pirrolidinas/farmacologia , Relação Quantitativa Estrutura-Atividade
13.
Cureus ; 16(7): e65379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39184681

RESUMO

Introduction Primary knee osteoarthritis (OA) is a multifactorial degenerative joint disorder characterized by articular cartilage degradation. Matrix metalloproteinases (MMPs) have been reported to play a vital role in OA pathogenesis, significantly contributing to extracellular matrix (ECM) catabolism. The purpose of this study is to investigate the association of MMP-2 -1575G/A (rs243866), MMP-9 836A/G (rs17576), and MMP-13 -77A/G (rs2252070) gene polymorphisms with knee OA in the Greek population. Methods One hundred patients (24% males, mean age: 68.3 years) with primary knee OA were included in the study along with 100 controls (47% males, mean age: 65.2 years). Genotypes were identified through polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) technique. Allelic and genotypic frequencies were compared between patients and controls. Results The MMP-13 -77A/G polymorphism was significantly associated with knee OA in the crude analysis (P = 0.008). After binary logistic regression analysis, the dominant model of the MMP-13-77A/G (AG + GG versus AA) was found to be associated with increased risk for knee OA (odds ratio (OR) = 2.290, 95% confidence interval (95%CI) = 1.059-4.949, P= 0.035). Compared to the A allele, the G allele in the MMP-13rs2252070 locus was a predictive factor for knee OA (OR = 2.351, 95%CI = 1.134-4.874, P= 0.022). No significant associations were detected for the MMP-2 -1575G/A and MMP-9 836A/G polymorphisms (P > 0.05). Conclusions The present study shows that the MMP-2 -1575G/A and MMP-9 836A/G polymorphisms are not significantly associated with primary knee OA in the Greek population. The MMP-13 -77A/G was found to be a significant risk factor for knee OA in the Greek population. Additional research is needed to verify this association in larger and different populations, in different joints, to elucidate the role of this single nucleotide polymorphism (SNP) in OA pathogenesis.

14.
J Anim Sci Biotechnol ; 15(1): 115, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217350

RESUMO

BACKGROUND: The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS: The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1ß contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1ß contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS: Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.

15.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123364

RESUMO

Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.

16.
Kidney Med ; 6(8): 100850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131916

RESUMO

Rationale & Objective: Matrix metalloproteinase 2 (MMP-2) plays an important role in the development of fibrosis, the final common pathway of chronic kidney disease (CKD). This study aimed to assess the relationship between repeated measures of MMP-2 and CKD progression in a large, diverse prospective cohort. Study Design: In a prospective cohort of Chronic Renal Insufficiency Cohort (CRIC) participants (N = 3,827), MMP-2 was measured at baseline. In a case-cohort design, MMP-2 was additionally measured at year 2 in a randomly selected subcohort and cases of estimated glomerular filtration rate (eGFR) halving or kidney replacement therapy (KRT) (N = 1,439). Setting & Participants: CRIC is a multicenter prospective cohort of adults with CKD. Exposure: MMP-2 measured in plasma at baseline and at year 2. Outcomes: A composite kidney endpoint (KRT/eGFR halving). Analytical Approach: Weighted Cox proportional hazards models for case-cohort participants. Results: Participants were followed for a median of 4.6 years from year 2 and 6.9 years from the baseline. Persistently elevated MMP-2 (≥300 ng/mL at both baseline and year 2) increased the hazard of the composite kidney endpoint (HR, 1.61; 95% CI, 1.07-2.42; P = 0.09) after adjusting for covariates. The relationship of persistently elevated MMP-2 was modified by levels of inflammation, with a 2.6 times higher rate of the composite kidney endpoint in those with high-sensitivity C-reactive protein < 2.5 g/dL at study entry. Heterogeneity of effect was found with proteinuria, with a baseline MMP-2 level of ≥300 ng/mL associated with an increased risk of the composite kidney endpoint (HR, 1.30; 95% CI, 1.09-1.54) only with proteinuria ≥ 442 mg/g. Limitations: The observational study design limits causal interpretation. Conclusions: Elevated MMP-2 is associated with CKD progression, particularly among those with low inflammation and those with proteinuria. Future investigations are warranted to confirm the reduction in risk of CKD progression among these subgroups of patients with CKD.


Matrix metalloproteinase 2 (MMP-2) is a matrix-degrading protease involved in fibrosis and elevated in chronic kidney disease (CKD). Longitudinal patterns of MMP-2 have not previously been assessed as a predictor of CKD progression in a large prospective cohort. Here, we found that a higher baseline level and an increasing or persistently elevated 2-year pattern of MMP-2 were associated with CKD progression, independent of all covariates except proteinuria. The association of baseline MMP-2 with CKD progression differed by level of proteinuria, whereas levels of inflammation modified the associations of 2-year MMP-2 patterns with CKD progression.

17.
Chem Asian J ; : e202400743, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212080

RESUMO

The field of electrogenerated chemiluminescence (ECL) biosensing has witnessed remarkable growth, emphasizing the need for precise detection of biomarkers. The synthesis approach of peptide-based signal probe with high recognition ability and high ECL efficiency is a significant issue in the ECL biosensing. Here, a heavily labeled signal probe was synthesized for ECL peptide-based biosensing tactic by using a new aldehyde bearing cyclometalated Ir(III) complex ([Ir(bt)2(bpy-CHO)PF6 (bt =2-phenylbenzothiazole, bpy-CHO=4'-methyl-[2,2'-bipyridine]-4-carbaldehyde, denoted as Ir1) as ECL signal reagent and streptavidin (SA) as carrier protein. One ECL peptide-based biosensing method was exemplified for the detection of matrix metalloproteinase 2 (MMP-2) by using Ir1 labeled SA (SA-Ir1) as heavily labeled signal probe and biotinylated peptide as molecular recognition substrate. MMP-2 was sensitively detected in the range from 5 to 100 ng/mL with a detection limit of 1.5 ng/mL. Importantly, two detection modes differing in the order of cleavage recognition by MMP-2 and signal transduction with SA-Ir1 were compared for the first time. First cleavage and second signal transduction were proposed to be beneficial to sensitive detection of target, which provides some ideas for biomarker diagnostics in disease screening at an early stage.

18.
J Clin Med ; 13(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39200884

RESUMO

Background: Matrix metalloproteinases (MMPs) play an important role in the pathophysiology of atherosclerosis. Reportedly, statins can decrease MMP activity in patients with atherosclerotic cardiovascular disease, but this effect has not been studied in healthy individuals. Methods: MMPs 2, 7, and 9 and several other parameters were measured before and after a four-week course of moderate-dose atorvastatin (20 mg/day) in 21 healthy individuals. Results: Atorvastatin treatment resulted in lower total cholesterol, LDL-cholesterol, non-HDL-cholesterol, and triglycerides (p < 0.001 for all), but higher levels of plasma enzymes AST, ALT, CK, and LDH (p < 0.05 for all). No effect of atorvastatin on plasma MMP median concentrations was recorded. Before treatment, moderate positive significant correlations were found between MMP-7 and age, blood lipids, and blood count-derived inflammatory markers. Pre-treatment MMP-7 was best predicted by the total cholesterol-to-HDL cholesterol ratio in a remnant cholesterol-weighted least squares regression model. After atorvastatin treatment, MMP-7 no longer correlated with these markers. Conclusions: While the effect of statins on plasma MMPs in atherosclerosis is controversial, short-term moderate-dose atorvastatin treatment does not seem to affect levels of MMPs 2, 7, and 9 in healthy individuals. However, an intriguing correlation between MMP-7 and atherosclerosis-related blood lipids and neutrophil-associated inflammatory biomarkers seems to be disrupted by atorvastatin independently of hsCRP, possibly via pleiotropic effects.

19.
Biomedicines ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39062041

RESUMO

Cervical squamous cell carcinoma (CSCC) represents a significant global health concern among females. Identifying new biomarkers and therapeutic targets is pivotal for improving the prognosis of CSCC. This study investigates the prognostic relevance of CCZ1 in CSCC and elucidates its downstream pathways and targets using a combination of bioinformatics analysis and experimental validation. Transcriptomic analysis of 239 CSCC and 3 normal cervical samples from The Cancer Genome Atlas database reveals a marked upregulation of CCZ1 mRNA levels in CSCC, and elevated CCZ1 mRNA levels were associated with poor prognosis. Immunohistochemical analysis of clinical samples also confirmed these findings. Furthermore, functional assays, including Cell Counting Kit-8, colony formation, Transwell, and flow cytometry, elucidated the influence of CCZ1 on CSCC cell proliferation, migration, invasion, and cell cycle progression. Remarkably, CCZ1 knockdown suppressed CSCC progression both in vitro and in vivo. Mechanistically, CCZ1 knockdown downregulated MMP2 and MMP17 expression. Restoring MMP2 or MMP17 expression rescued phenotypic alterations induced by CCZ1 knockdown. Hence, CCZ1 promotes CSCC progression by upregulating MMP2 and MMP17 expression, emerging as a novel biomarker in CSCC and presenting potential as a therapeutic target in CSCC.

20.
Reprod Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995602

RESUMO

In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...