Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
1.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108036

RESUMO

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Receptores Fc/genética , Receptores Fc/metabolismo , Prognóstico , Microambiente Tumoral/imunologia , Masculino , Proliferação de Células , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo
2.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123364

RESUMO

Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.

3.
Kidney Med ; 6(8): 100850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131916

RESUMO

Rationale & Objective: Matrix metalloproteinase 2 (MMP-2) plays an important role in the development of fibrosis, the final common pathway of chronic kidney disease (CKD). This study aimed to assess the relationship between repeated measures of MMP-2 and CKD progression in a large, diverse prospective cohort. Study Design: In a prospective cohort of Chronic Renal Insufficiency Cohort (CRIC) participants (N = 3,827), MMP-2 was measured at baseline. In a case-cohort design, MMP-2 was additionally measured at year 2 in a randomly selected subcohort and cases of estimated glomerular filtration rate (eGFR) halving or kidney replacement therapy (KRT) (N = 1,439). Setting & Participants: CRIC is a multicenter prospective cohort of adults with CKD. Exposure: MMP-2 measured in plasma at baseline and at year 2. Outcomes: A composite kidney endpoint (KRT/eGFR halving). Analytical Approach: Weighted Cox proportional hazards models for case-cohort participants. Results: Participants were followed for a median of 4.6 years from year 2 and 6.9 years from the baseline. Persistently elevated MMP-2 (≥300 ng/mL at both baseline and year 2) increased the hazard of the composite kidney endpoint (HR, 1.61; 95% CI, 1.07-2.42; P = 0.09) after adjusting for covariates. The relationship of persistently elevated MMP-2 was modified by levels of inflammation, with a 2.6 times higher rate of the composite kidney endpoint in those with high-sensitivity C-reactive protein < 2.5 g/dL at study entry. Heterogeneity of effect was found with proteinuria, with a baseline MMP-2 level of ≥300 ng/mL associated with an increased risk of the composite kidney endpoint (HR, 1.30; 95% CI, 1.09-1.54) only with proteinuria ≥ 442 mg/g. Limitations: The observational study design limits causal interpretation. Conclusions: Elevated MMP-2 is associated with CKD progression, particularly among those with low inflammation and those with proteinuria. Future investigations are warranted to confirm the reduction in risk of CKD progression among these subgroups of patients with CKD.


Matrix metalloproteinase 2 (MMP-2) is a matrix-degrading protease involved in fibrosis and elevated in chronic kidney disease (CKD). Longitudinal patterns of MMP-2 have not previously been assessed as a predictor of CKD progression in a large prospective cohort. Here, we found that a higher baseline level and an increasing or persistently elevated 2-year pattern of MMP-2 were associated with CKD progression, independent of all covariates except proteinuria. The association of baseline MMP-2 with CKD progression differed by level of proteinuria, whereas levels of inflammation modified the associations of 2-year MMP-2 patterns with CKD progression.

4.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992615

RESUMO

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Quinase Syk , Vasodilatação , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Quinase Syk/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fenantrenos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Vasodilatação/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/fisiopatologia , Vasodilatadores/farmacologia , Fosforilação , Camundongos , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/enzimologia , Apolipoproteínas E
5.
Plants (Basel) ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999635

RESUMO

Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1209-1216, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977352

RESUMO

OBJECTIVE: To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS: We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TßR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS: Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-ß signaling pathway, and the expressions of MMP-2/MMP-9 and TßR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TßR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION: The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-ß signaling pathway, and its high expression promotes migration of ESCC cells.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Proteína Homeobox Nanog , Invasividade Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Fator de Crescimento Transformador beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Masculino , Feminino
7.
Acta Pharmacol Sin ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

8.
Biomedicines ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39062041

RESUMO

Cervical squamous cell carcinoma (CSCC) represents a significant global health concern among females. Identifying new biomarkers and therapeutic targets is pivotal for improving the prognosis of CSCC. This study investigates the prognostic relevance of CCZ1 in CSCC and elucidates its downstream pathways and targets using a combination of bioinformatics analysis and experimental validation. Transcriptomic analysis of 239 CSCC and 3 normal cervical samples from The Cancer Genome Atlas database reveals a marked upregulation of CCZ1 mRNA levels in CSCC, and elevated CCZ1 mRNA levels were associated with poor prognosis. Immunohistochemical analysis of clinical samples also confirmed these findings. Furthermore, functional assays, including Cell Counting Kit-8, colony formation, Transwell, and flow cytometry, elucidated the influence of CCZ1 on CSCC cell proliferation, migration, invasion, and cell cycle progression. Remarkably, CCZ1 knockdown suppressed CSCC progression both in vitro and in vivo. Mechanistically, CCZ1 knockdown downregulated MMP2 and MMP17 expression. Restoring MMP2 or MMP17 expression rescued phenotypic alterations induced by CCZ1 knockdown. Hence, CCZ1 promotes CSCC progression by upregulating MMP2 and MMP17 expression, emerging as a novel biomarker in CSCC and presenting potential as a therapeutic target in CSCC.

9.
Life (Basel) ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39063556

RESUMO

Matrix metalloproteinase (MMP)-2 and -9, which degrade type IV collagen, are linked to cancer invasion and metastasis. Gene polymorphisms in MMP-2 and MMP-9 can influence their function, impacting cancer development and progression. This study analyzed the association between polymorphisms MMP-2 rs243865 (C-1306T), rs2285053 (C-735T), and MMP-9 rs3918242 (C-1562T) with serum concentrations of these enzymes in upper tract urothelial cancer (UTUC) patients. We conducted a case-control study with 218 UTUC patients and 580 healthy individuals in Taiwan. Genotyping was performed using PCR/RFLP on DNA from blood samples, and MMP-2 and MMP-9 serum levels and mRNA expressions in 30 UTUC patients were measured using ELISA and real-time PCR. Statistical analysis showed that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes were differently distributed between UTUC patients and controls (p = 0.0199 and 0.0020). The MMP-2 rs2285053 TT genotype was associated with higher UTUC risk compared to the CC genotype (OR = 2.20, p = 0.0190). Similarly, MMP-9 rs3918242 CT and TT genotypes were linked to increased UTUC risk (OR = 1.51 and 2.92, p = 0.0272 and 0.0054). In UTUC patients, TT carriers of MMP-2 rs2285053 and MMP-9 rs3918242 showed higher mRNA and protein levels (p < 0.01). These findings suggest that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes are significant markers for UTUC risk and metastasis in Taiwan.

10.
J Pathol ; 264(1): 30-41, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989633

RESUMO

The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin ß1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Membrana Basal , Melanócitos , Vitiligo , Vitiligo/patologia , Vitiligo/metabolismo , Melanócitos/patologia , Melanócitos/metabolismo , Membrana Basal/patologia , Membrana Basal/metabolismo , Humanos , Animais , Camundongos , Metaloproteinase 2 da Matriz/metabolismo , Fibroblastos/patologia , Fibroblastos/metabolismo , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
Reprod Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995602

RESUMO

In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.

12.
Future Oncol ; : 1-8, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011948

RESUMO

Aim: To evaluate the prognostic significance of CD44 variant v6 (CD44v6) and matrix metalloproteinases 2 (MMP2) expression in patients with surgically resected osteosarcoma. Methods: CD44v6 and MMP2 expression were immunohistochemically detected in 113 primary osteosarcoma patients at our institute between 2001 and 2019. Results: Both CD44v6 and MMP2 were independent predictors for metastasis-free and overall survival. An extended predictive range and improved sensitivity were observed when the combined effects of CD44v6 and MMP2 were considered. Specifically, patients with CD44v6+ and MMP2+ expression were more susceptible to lung metastasis and exhibited the poorest survival rates compared with the other groups. Conclusion: The combination of CD44v6 and MMP2 may serve as a precise prognostic indicator for predicting metastatic progression and survival outcomes in patients with osteosarcoma.


The most common type of bone cancer in children, teens and young adults is osteosarcoma, which often spreads to the lungs. With proper chemotherapy and surgery, many patients can recover, but if the diagnosis and treatment process go wrong, it could have serious consequences. The most common symptoms of osteosarcoma in its early stages are pain and swelling. The pain usually comes and goes, which can be easily mistaken for growing pains, resulting in a delayed diagnosis. In patients with metastatic (cancer cells spreading from the primary site to other parts of the body) osteosarcoma, the number of metastatic sites and whether they can be completely removed through surgery are factors that affect prognosis. So, starting appropriate treatment early for patients could effectively reduce tumor spread and increase survival time.

13.
Life Sci ; 351: 122819, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857651

RESUMO

AIMS: Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS: Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS: 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE: H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.


Assuntos
Pressão Sanguínea , Sulfeto de Hidrogênio , Metaloproteinase 2 da Matriz , NF-kappa B , Estresse Oxidativo , Animais , Masculino , Ratos , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão Renovascular/tratamento farmacológico , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , Isotiocianatos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Sulfetos/farmacologia
14.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892452

RESUMO

Ovarian cancer (OC) has an unfavorable prognosis. Due to the lack of effective screening tests, new diagnostic methods are being sought to detect OC earlier. The aim of this study was to evaluate the concentration and diagnostic utility of selected matrix metalloproteinases (MMPs) as OC markers in comparison with HE4, CA125 and the ROMA algorithm. The study group consisted of 120 patients with OC; the comparison group consisted of 70 patients with benign lesions and 50 healthy women. MMPs were determined via the ELISA method, HE4 and CA125 by CMIA. Patients with OC had elevated levels of MMP-3 and MMP-11, similar to HE4, CA125 and ROMA values. The highest SE, SP, NPV and PPV values were found for MMP-26, CA125 and ROMA in OC patients. Performing combined analyses of ROMA with selected MMPs increased the values of diagnostic parameters. The topmost diagnostic power of the test was obtained for MMP-26, CA125, HE4 and ROMA and performing combined analyses of MMPs and ROMA enhanced the diagnostic power of the test. The obtained results indicate that the tested MMPs do not show potential as stand-alone OC biomarkers, but can be considered as additional tests to raise the diagnostic utility of the ROMA algorithm.


Assuntos
Algoritmos , Biomarcadores Tumorais , Antígeno Ca-125 , Metaloproteinase 2 da Matriz , Neoplasias Ovarianas , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos , Humanos , Feminino , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Antígeno Ca-125/sangue , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/análise , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Adulto , Idoso , Metaloproteinase 2 da Matriz/sangue , Proteínas/metabolismo , Proteínas/análise , Metaloproteinases da Matriz/sangue , Metaloproteinases da Matriz/metabolismo , Metaloproteinase 3 da Matriz/sangue , Proteínas de Membrana/sangue , Proteínas de Membrana/metabolismo , Estudos de Casos e Controles , Curva ROC , Metaloproteinase 11 da Matriz/sangue , Metaloproteinase 11 da Matriz/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38878160

RESUMO

Although it is crucial to promptly restore blood perfusion to revive the ischemic myocardium, reperfusion itself can paradoxically contribute to the electrical instability and arrhythmias of the myocardium. Several studies have revealed that cardiac fibroblasts can impact cardiac electrophysiology through various mechanisms including the deposition of extracellular matrix, release of chemical mediators, and direct electrical coupling with myocytes. Previously, we have shown that hypoxia/reoxygenation (H/R)-treated rat fibroblasts conditional medium (H/R-FCM) could decrease the spontaneous beating frequency of rat neonatal cardiomyocytes and downregulate the expression of gap junction proteins. However, the specific mechanism by which H/R-FCM affects the gap junctions requires further investigation. H/R-FCM was obtained by culturing confluent rat cardiac fibroblasts (RCF) for 4 h under hypoxic conditions. Gap junction function, hemichannel activity, and expression of Cx43 were examined upon treatment with H/R-FCM. Gelatin zymography was performed to detect matrix metalloproteinase (MMP) activity in the conditioned medium. The effect of H/R-FCM and MMP2 inhibitors on cardiac electrophysiology and arrhythmias was investigated with an isolated rat ischemia/reperfusion (I/R) model. H/R-FCM treatment impaired gap junction function, downregulated Cx43 expression, and increased hemichannel activity in rat cardiomyocytes (H9c2). The adverse effect of H/R-FCM on gap junction, which was confirmed by the cardiomyocyte H/R model, was involved in the activation of MMP2. MMP2 inhibition could partially attenuate the detrimental effects of I/R on myocardial electrophysiological indices and arrhythmia susceptibility. Our study indicates that inhibition of MMP2 may be a promising therapeutic target for the treatment of reperfusion arrhythmia.

16.
Eur J Med Chem ; 274: 116563, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843586

RESUMO

Chronic myeloid leukemia (CML) is a global issue and the available drugs such as tyrosine kinase inhibitors (TKIs) comprise various toxic effects as well as resistance and cross-resistance. Therefore, novel molecules targeting specific enzymes may unravel a new direction in antileukemic drug discovery. In this context, targeting gelatinases (MMP-2 and MMP-9) can be an alternative option for the development of novel molecules effective against CML. In this article, some D(-)glutamine derivatives were synthesized and evaluated through cell-based antileukemic assays and tested against gelatinases. The lead compounds, i.e., benzyl analogs exerted the most promising antileukemic potential showing nontoxicity in normal cell line including efficacious gelatinase inhibition. Both these lead molecules yielded effective apoptosis and displayed marked reductions in MMP-2 expression in the K562 cell line. Not only that, but both of them also revealed effective antiangiogenic efficacy. Importantly, the most potent MMP-2 inhibitor, i.e., benzyl derivative of p-tosyl D(-)glutamine disclosed stable binding interaction at the MMP-2 active site correlating with the highly effective MMP-2 inhibitory activity. Therefore, such D(-)glutamine derivatives might be explored further as promising MMP-2 inhibitors with efficacious antileukemic profiles for the treatment of CML in the future.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Glutamina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metaloproteinase 2 da Matriz/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Glutamina/química , Glutamina/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Células K562 , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos
17.
Int J Biol Sci ; 20(8): 3201-3218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904015

RESUMO

Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.


Assuntos
Exossomos , Neoplasias Hepáticas , Macrófagos , MicroRNAs , Tumores Neuroendócrinos , Neoplasias Pancreáticas , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Exossomos/metabolismo , Humanos , Animais , Camundongos , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Macrófagos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Oxirredução , Microambiente Tumoral , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos Nus , Transdução de Sinais
18.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928425

RESUMO

The levels of the MMPs in the biological samples of confirmed patients with gastric cancer are significantly elevated compared to those found in healthy people. Therefore, a novel 3D stochastic microsensor based on graphene oxide, modified with gold nanoparticles and (Z)-N-(pyridin-4-yl-methyl) octadec-9-enamide (namely N2-AuNP/GO), was designed for the determination of MMP-2 in biological samples, and validated for the screening tests of biological samples in order to be used for the early diagnosis of gastric cancer. The proposed sensor presents a low limit of quantification (1.00 × 10-22 g mL-1), high sensitivity (1.84 × 107 s-1 g-1 mL), and a wide working concentration range (1.00 × 10-22-1.00 × 10-7 g mL-1). Recovery values higher than 99.15% were recorded for the assay of MMP-2 in whole blood, gastric tissue tumors, saliva, and urine samples.


Assuntos
Ouro , Grafite , Metaloproteinase 2 da Matriz , Nanopartículas Metálicas , Grafite/química , Humanos , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 2 da Matriz/urina , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas/química , Ouro/química , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/sangue , Técnicas Biossensoriais/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38943385

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a serious retinal vascular disease that affects many individuals in their prime working years. The present research aimed at whether and how LOC681216 (LNC-216) is involved in retinal vascular dysfunction under diabetic conditions. METHODS: Rat retinal microvascular endothelial cells (RRMECs) treated with high glucose (HG) were used for functional analysis. Gene expression analysis was conducted using the Clariom D Affymetrix platform. The wound healing, transwell, and vascular tube formation assays were used to identify the migration, invasion, and tube formation capability of RRMECs. The dual-luciferase reporter confirmed the binding interaction between miR-143-5p and LNC-216 or matrix metallopeptidase 2 (MMP2). RESULTS: Lnc-216 was upregulated in RRMECs treated with HG. Lnc-216 knockdown markedly suppressed the tube formation, cell migration, and wound healing of cultured RRMECs under HG conditions. Mechanistically, Lnc-216 acted as a miR-143-5p sponge to affect the biological activity of miR-143-5p, which led to increased expression of matrix metallopeptidase 2 (MMP2). CONCLUSIONS: Lnc-216 attenuates diabetic retinal vascular dysfunction through the miR-143-5p/MMP2 axis, providing a potential therapeutic strategy for DR.

20.
Dent Mater ; 40(8): 1128-1137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821837

RESUMO

Hydrolytically and enzymatically-stable multi-acrylamides have been proposed to increase the long-term durability of dental adhesive interfaces as alternatives to methacrylates. The aim of this study was to investigate the mechanical and biochemical properties of experimental adhesives containing multi-functional acrylamides concerning collagen reinforcement and metalloproteinases (MMP) activity. Multi-functional acrylamides, TMAAEA (Tris[(2-methylaminoacryl) ethylamine) and DEBAAP (N,N-Diethyl-1,3-bis(acrylamido) propane), along with the commercially available DMAM (N,N-dimethylacrylamide) (monofunctional acrylamide) and HEMA (2-Hydroxyethyl methacrylate) (monofunctional methacrylate - control) were tested for stability against enzymatic hydrolysis by cholesterol esterase/pseudocholinesterase (PC/PCE) solutions for up to 30 days. Collagen-derived substrate and gelatin zymography were performed to examine the effect of the compounds on the biological activity of human recombinant and dentin-extracted gelatinases MMP-2 and MMP-9. In situ zymography was carried out by fluorescent collagen degradation combined with confocal microscopy analysis. Hydroxyproline content was measured in collagen derived from dentin extracts though reaction with Ehrlich's reagent p-dimethylaminobenzaldehyde (DMAB), generating a stable chromophore measured at 550 nm. Storage shear modulus of demineralized dentin discs treated with the tested compounds was measured by oscillatory rheometry, in order to investigate potential collagen reinforcement. FT-IR was performed to determine qualitative differences in collagen based on observed changes in amide bands. The results were analyzed by ANOVA/Tukey's test (α = 0.05). Multi-acrylamides survived 30 days of incubation in cholinesterase/pseudo-cholinesterase (PC/PCE) solutions, while HEMA showed approximately 70 % overall degradation. Incubation with multi-acrylamides reduced collagen degradation as evidenced by the reduced hydroxyproline levels and by the 30 % increase inshear storage modulus. Biochemical and zymography assays showed no noticeable inhibition of recombinant and extracted MMPs enzymatic activity. The infra-red spectroscopy results for multi-functional acrylamides treated samples demonstrated shifts of the amide II bonds and marked increase in intensity of the bands 1200 cm-1, which may indicate partial collagen denaturation and some degree of cross-linking of the compounds with collagen, respectively. The multi-acrylamides exhibited not only comparable mechanical properties but also demonstrated significantly enhanced biochemical stability when compared to the widely used methacrylate control. Clinical relevance: These findings highlight the potential of multi-acrylamides to increase the bonding stability to tissues and, ultimately, contribute to the longevity of dental restorations.


Assuntos
Acrilamidas , Colágeno , Teste de Materiais , Colágeno/química , Acrilamidas/química , Humanos , Adesivos Dentinários/química , Dentina/química , Metacrilatos/química , Colagem Dentária , Microscopia Confocal , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...