Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 230: 105990, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39154751

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS). KSHV is one of the oncoviruses that contribute to 1.5 million new infection-related cancer cases annually. Currently, there are no targeted therapies for KSHV-associated diseases. Through the development of a medium-throughput phenotype-based ELISA screening platform based on KSHV ORF57 protein detection, we screened the Medicines for Malaria Venture (MMV) Pandemic Response Box for non-cytotoxic inhibitors of KSHV lytic replication. MMV1645152 was identified as a promising inhibitor of KSHV lytic replication, suppressing KSHV immediate-early and late lytic gene expression and blocking the production of infectious KSHV virion particles at non-cytotoxic concentrations in cell line models of KSHV infection with or without EBV coinfection. MMV1645152 is a promising hit compound for the development of future therapeutic agents against KSHV-associated malignancies.


Assuntos
Antivirais , Descoberta de Drogas , Herpesvirus Humano 8 , Replicação Viral , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Humanos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Bibliotecas de Moléculas Pequenas/farmacologia , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/tratamento farmacológico
2.
New Microbes New Infect ; 60-61: 101444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040124

RESUMO

Background: Multidrug resistant bacterial and fungal pathogens are resistant to a number of significant front-line drugs, hence, identification of new inhibitory agents to combat them is crucial. In this study, we aim to evaluate the activity of Pandemic Box compounds from Malaria Medicines Venture (MMV) against A. baumannii and P. aeruginosa bacterial, C. auris, C. albicans and A. niger fungal clinical isolates. Methods: Isolates were initially screened with 201 antibacterial and 46 antifungal compounds (10 µM) using a microbroth dilution in triplicates to determine MIC. A persister assay was performed for bacterial pathogens. Results: Out of 201 antibacterial compounds, twenty-nine and seven compounds inhibited the growth of A. baumannii and P. aeruginosa at 10 µM, respectively. MMV1580854, MMV1579788, eravacycline and epetraborole inhibited both the bacterial test isolates. In a persister assay, MMV1634390 showed complete bactericidal effect against A. baumannii. With antifungal activity compounds, C. auris responded to15 compounds, Six compounds inhibited C. albicans and one was effective against A. niger at 10 µM. The ratio of Minimum Fungicidal Concentration (MFC): Minimum Inhibitory Concentration (MIC) of MMV1782110 was 2 against C. auris. Eberconazole, amorolfine and luliconazole are fungicidal targeting C. albicans at a MFC: MIC ratio of 2. Conclusion: Five compounds from MMV Pandemic Box were found to be inhibiting colistin and ceftazidime resistant A. baumannii clinical isolate, also against colistin and ß-lactam resistant P. aeruginosa clinical isolate. MMV1634390 showed complete bactericidal effect against A. baumannii in a persister assay. MMV1782110, Eberconazole, amorolfine and luliconazole exhibited potent anti-fungal activity. Further investigations are warranted to identify the targets and mechanism.

3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892422

RESUMO

OBJECTIVES: Eumycetoma is a neglected tropical disease (NTD) characterized by subcutaneous lesions and the formation of grains. Attempts to treat eumycetoma involve a combination of antifungal treatment and surgery, although the outcome is frequently disappointing. Therefore, there is a need to identify novel antifungal drugs to treat eumycetoma. In this respect, Medicines for Malaria Venture (MMV) has assembled libraries of compounds for researchers to use in drug discovery research against NTD. Therefore, we screened two MMVOpen compound libraries to identify novel leads for eumycetoma. METHODS: A total of 400 compounds from the COVID Box and the Global Health Priority Box were screened in vitro at 100 µM and 25 µM against the most common causative agents of eumycetoma, namely Madurella mycetomatis and Falciformispora senegalensis, and the resulting IC50 and MIC50 values were obtained. Compounds with an IC50 < 8 µM were identified for possible in vivo efficacy studies using an M. mycetomatis grain model in Galleria mellonella larvae. RESULTS: Out of the 400 compounds, 22 were able to inhibit both M. mycetomatis and F. senegalensis growth at 100 µM and 25 µM, with compounds MMV1593278, MMV020335, and MMV1804559 being selected for in vivo testing. Of these three, only the pyrazolopyrimidine derivative MMV1804559 was able to prolong the survival of M. mycetomatis-infected G. mellonella larvae. Furthermore, the grains in MMV1804559-treated larvae were significantly smaller compared to the PBS-treated group. CONCLUSION: MMV1804559 shows promising in vitro and in vivo activity against M. mycetomatis.


Assuntos
Antifúngicos , Madurella , Micetoma , Madurella/efeitos dos fármacos , Micetoma/tratamento farmacológico , Micetoma/microbiologia , Antifúngicos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Larva/efeitos dos fármacos , Larva/microbiologia , Humanos
4.
SLAS Discov ; 29(5): 100168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866329

RESUMO

Despite the efforts towards malaria eradication, latest estimates show that the number of malaria cases is still rising, and malaria continues to have a devastating impact on people's health and livelihoods particularly in populations located in sub-Saharan Africa 1. As a Product Development Partnership (PDP), MMV Medicines for Malaria Venture (MMV) plays a crucial role by using public and philanthropic funds to engage the pharmaceutical industry and academic research institutions to discover, develop and deliver the new drugs needed to control and eradicate malaria. MMV Discovery, working with partners, has developed a robust pipeline of molecules and a reliable discovery engine able to support research projects from screening to candidate nomination, providing access to centers of expertise and evaluating the profile and potential of molecules. To efficiently support this malaria discovery effort, MMV and its partners have established a state-of-the-art compound management network, supporting all discovery activities. This network serves both discovery projects and open innovation initiatives, such as MMV Open, tailoring workflows to align with distinct project objectives. In addition to this, MMV has implemented reliable integrated logistic tools and interfaces. These tools enable the efficient management and tracking of individual not solubilized (dry) samples of project compounds, as well as dedicated, solubilized libraries of compounds designated for primary screens targeting malaria and other neglected diseases.


Assuntos
Antimaláricos , Descoberta de Drogas , Indústria Farmacêutica , Malária , Descoberta de Drogas/métodos , Antimaláricos/química , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Humanos , Malária/tratamento farmacológico , Indústria Farmacêutica/métodos
5.
Antibiotics (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786132

RESUMO

This study investigates the in vitro activity of Nα-aroyl-N-aryl-phenylalanine amides (AAPs), previously identified as antimycobacterial RNA polymerase (RNAP) inhibitors, against a panel of 25 non-tuberculous mycobacteria (NTM). The compounds, including the hit compound MMV688845, were selected based on their structural diversity and previously described activity against mycobacteria. Bacterial strains, including the M. abscessus complex, M. avium complex, and other clinically relevant NTM, were cultured and subjected to growth inhibition assays. The results demonstrate significant activity against the most common NTM pathogens from the M. abscessus and M. avium complexes. Variations in activity were observed against other NTM species, with for instance M. ulcerans displaying high susceptibility and M. xenopi and M. simiae resistance to AAPs. Comparative analysis of RNAP ß and ß' subunits across mycobacterial species revealed strain-specific polymorphisms, providing insights into differential compound susceptibility. While conservation of target structures was observed, differences in compound activity suggested influences beyond drug-target interactions. This study highlights the potential of AAPs as effective antimycobacterial agents and emphasizes the complex interplay between compound structure, bacterial genetics, and in vitro activity.

6.
Antimicrob Agents Chemother ; 67(11): e0034823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37791750

RESUMO

Therapeutic options for Neisseria gonorrhoeae are limited due to emerging global resistance. New agents and treatment options to treat patients with susceptible and multi-extensively drug-resistant N. gonorrhoeae is a high priority. This study used an in vitro approach to explore the antimicrobial potential, as well as synergistic effects of Medicine for Malaria Venture (MMV) Pathogen Box compounds against ATCC and clinical N. gonorrhoeae strains. Microbroth dilution assay was used to determine pathogen-specific minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Pathogen Box compounds against susceptible and resistant N. gonorrhoeae strains, with modification, by adding PrestoBlue HS Cell Viability Reagent. A checkerboard assay was used to determine synergy between the active compounds and in conjunction with ceftriaxone. Time-kill kinetics was performed to determine if the compounds were either bactericidal or bacteriostatic. The Pathogen Box compounds: MMV676501, MMV002817, MMV688327, MMV688508, MMV024937, MMV687798 (levofloxacin), MMV021013, and MMV688978 (auranofin) showed potent activity against resistant strains of N. gonorrhoeae at an MIC and MBC of ≤10 µM. Besides the eight compounds, MMV676388 and MMV272144 were active against susceptible N. gonorrhoeae strains, also at MIC and MBC of ≤10 µM. All the compounds were bactericidal and were either synergistic or additive with fractional inhibitory concentration index ranging between 0.40 and 1.8. The study identified novel Pathogen Box compounds with potent activity against N. gonorrhoeae strains and has the potential to be further investigated as primary or adjunctive therapy to treat gonococcal infections.


Assuntos
Anti-Infecciosos , Gonorreia , Humanos , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/tratamento farmacológico , Ceftriaxona/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
7.
ACS Infect Dis ; 9(10): 1901-1917, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37756147

RESUMO

Fungal infections pose a significant and increasing threat to human health, but the current arsenal of antifungal drugs is inadequate. We screened the Medicines for Malaria Venture (MMV) Pathogen Box for new antifungal agents against three of the most critical Candida species (Candida albicans, Candida auris, and Candida glabrata). Of the 14 identified hit compounds, most were active against C. albicans and C. auris. We selected the pyrazolo-pyrimidine MMV022478 for chemical modifications to build structure-activity relationships and study their antifungal properties. Two analogues, 7a and 8g, with distinct fluorine substitutions, greatly improved the efficacy against C. auris and inhibited fungal replication inside immune cells. Additionally, analogue 7a had improved selectivity toward fungal killing compared to mammalian cytotoxicity. Evolution experiments generating MMV022478-resistant isolates revealed a change in morphology from oblong to round cells. Most notably, the resistant isolates blocked the uptake of the fluorescent dye rhodamine 6G and showed reduced susceptibility toward fluconazole, indicative of structural changes in the yeast cell surface. In summary, our study identified a promising antifungal compound with activity against high-priority fungal pathogens. Additionally, we demonstrated how structure-activity relationship studies of known and publicly available compounds can expand the repertoire of molecules with antifungal efficacy and reduced cytotoxicity to drive the development of novel therapeutics.


Assuntos
Antifúngicos , Candida auris , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Fluconazol/farmacologia , Candida albicans , Mamíferos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37329848

RESUMO

Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous discovery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical development.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Descoberta de Drogas
9.
Eur J Med Chem ; 251: 115179, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948075

RESUMO

Schistosomiasis is an infectious disease caused by blood flukes of the genus Schistosoma and affects approximately 200 million people worldwide. Since Praziquantel (PZQ) is the only drug for schistosomiasis, alternatives are needed. By a biochemical approach, we identified a tegumentally expressed aldehyde dehydrogenase (ALDH) of S. mansoni, SmALDH_312. Molecular analyses of adult parasites showed Smaldh_312 transcripts in both genders and different tissues. Physiological and cell-biological experiments exhibited detrimental effects of the drug disulfiram (DSF), a known ALDH inhibitor, on larval and adult schistosomes in vitro. DSF also reduced stem-cell proliferation and caused severe tegument damage in treated worms. In silico-modelling of SmALDH_312 and docking analyses predicted DSF binding, which we finally confirmed by enzyme assays with recombinant SmALDH_312. Furthermore, we identified compounds of the Medicine for Malaria Venture (MMV) pathogen box inhibiting SmALDH_312 activity. Our findings represent a promising starting point for further development towards new drugs for schistosomiasis.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Feminino , Masculino , Schistosoma mansoni , Esquistossomose mansoni/tratamento farmacológico , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Aldeído Desidrogenase/farmacologia
10.
JACC Case Rep ; 9: 101741, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909263

RESUMO

More women with mechanical mitral valves (MMVs) are pursuing pregnancy. Guidelines exist for pregnancy anticoagulation, but they do not address individualized anticoagulation during delivery-a period of risk for bleeding, thrombosis, and anesthetic complications. This case series of parturients with MMVs highlights the challenges in, and the evidence and strategies for, treating these patients. (Level of Difficulty: Advanced.).

11.
Pathog Glob Health ; 117(3): 315-321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36172647

RESUMO

The effect of MMV665941 on the growth of Babesia microti (B. microti) in mice, was investigated in this study using a fluorescence-based SYBR Green I test. Using atom Pair signatures, we investigated the structural similarity between MMV665941 and the commonly used antibabesial medicines diminazene aceturate (DA), imidocarb dipropionate (ID), or atovaquone (AV). In vitro cultures of Babesia bovis (B. bovis) and, Theileria equi (T. equi) were utilized to determine the MMV665941 and AV interaction using combination ratios ranged from 0.75 IC50 MMV665941:0.75 IC50 AV to 0.50 IC50 MMV665941:0.50 IC50 AV. The used combinations were prepared depending on the IC50 of each drug against the in vitro growth of the tested parasite. Every 96 h, the hemolytic anemia in the treated mice was monitored using a Celltac MEK-6450 computerized hematology analyzer. A single dose of 5 mg/kg MMV665941 exhibited inhibition in the B. microti growth from day 4 post-inoculation (p.i.) till day 12 p.i. MMV665941 caused 62.10%, 49.88%, and 74.23% inhibitions in parasite growth at days 4, 6 and 8 p.i., respectively. Of note, 5 mg/kg MMV665941 resulted in quick recovery of hemolytic anemia caused by babesiosis. The atom pair fingerprint (APfp) analysis revealed that MMV665941 and atovaquone (AV) showed maximum structural similarity. Of note, high concentrations (0.75 IC50) of MMV665941 and AV caused synergistic inhibition on B. bovis growth. These findings suggest that MMV665941 might be a promising drug for babesiosis treatment, particularly when combined with the commonly used antibabesial drug, AV.


Assuntos
Babesia microti , Babesia , Babesiose , Parasitos , Theileriose , Humanos , Bovinos , Animais , Camundongos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Babesia/fisiologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Roedores , Theileriose/tratamento farmacológico , Theileriose/parasitologia
12.
J Biomol Struct Dyn ; 41(11): 5117-5126, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652895

RESUMO

The present study is conducted to find the solution of rising antimicrobial resistance (AMR) in Escherichia coli which is a pathogen responsible for fatal systemic infections in human and animals. The enzyme dihydrofolate reductase (DHFR) is found in all organisms. In this study DHFR of E. coli (ec-DHFR) and human DHFR (h-DHFR) is targeted by novel chemical entities (NCE) from the Pathogen box of Medicines for Malaria Venture, Switzerland (MMV) using molecular modelling. The in-silico studies were further validated by in-vitro assays. The virtual screening of 400 MMV compounds was conducted using PyRx standard tool followed by manual docking of selected compounds by Autodock vina and Ligplot program. The in-silico studies showed good binding energy and strong hydrogen bond in docking of MMV675968 with ec-DHFR and no hydrogen bond with h-DHFR. This was further validated by the Molecular dynamic studies that revealed high binding free energy in ec-DHFR and in-vitro assays that produced good synergy in combination study of MMV675968 with last line (meropenem) and last resort (colistin) antibiotics. The extensive MD simulation and energetic analysis thus concludes that MMV675968 targets ec-DHFR. The combination studies were conducted with MMV675968 and FDA approved drugs against a panel of multidrug resistant Escherichia coli isolates. The synergistic results obtained in combination studies concluded that in-vitro data is consistent with in-silico data and that MMV675968 is a potential lead for future process of antimicrobial drug development against the multidrug resistance E. coli.Communicated by Ramaswamy H. Sarma.


Assuntos
Escherichia coli , Tetra-Hidrofolato Desidrogenase , Humanos , Animais , Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Antibacterianos/farmacologia , Simulação de Dinâmica Molecular
13.
Biochimie ; 206: 105-115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36273763

RESUMO

Snake envenomation is an ongoing global health problem and tropical neglected disease that afflicts millions of people each year. The only specific treatment, antivenom, has several limitations that affects its proper distribution to the victims and its efficacy against local effects, such as myonecrosis. The main responsible for this consequence are the phospholipases A2 (PLA2) and PLA2-like proteins, such as BthTX-I from Bothrops jararacussu. Folk medicine resorts to plants such as Tabernaemontana catharinensis to palliate these and other snakebite effects. Here, we evaluated the effect of its root bark extract and one of its isolated compounds, 12-methoxy-4-methyl-voachalotine (MMV), against the in vitro paralysis and muscle damage induced by BthTX-I. Secondary and quaternary structures of BthTX-I were not modified by the interaction with MMV. Instead, this compound interacted in an unprecedented way with the region inside the toxin hydrophobic channel and promoted a structural change in Val31, loop 58-71 and Membrane Disruption Site. Thus, we hypothesize that MMV inhibits PLA2-like proteins by preventing entrance of fatty acid into the hydrophobic channel. These data may explain the traditional use of T. catharinensis extract and confirm MMV as a promising candidate to complement antivenom or a structural guide to develop more effective inhibitors.


Assuntos
Bothrops , Venenos de Crotalídeos , Tabernaemontana , Animais , Antivenenos/farmacologia , Antivenenos/química , Tabernaemontana/metabolismo , Fosfolipases A2/química , Venenos de Serpentes , Venenos de Crotalídeos/química , Bothrops/metabolismo
14.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36558954

RESUMO

MMV's Malaria Box compound MMV030666 shows multi-stage activity against various strains of Plasmodium falciparum and lacks resistance development. To evaluate the importance of its diarylether partial structure, diarylthioethers and diphenylamines with varying substitution patterns were prepared. A number of evident structure-activity relationships were revealed. Physicochemical and pharmacokinetic parameters were determined experimentally (passive permeability) or calculated. Compared to the lead compound a diarylthioether was more active and less cytotoxic resulting in an excellent selectivity index of 850. In addition, pharmacokinetic and physicochemical parameters were improved.

15.
Front Cell Infect Microbiol ; 12: 1048962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452305

RESUMO

Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.


Assuntos
Babesia microti , Babesia , Babesiose , Gastrópodes , Camundongos , Humanos , Animais , Babesia microti/genética , Babesiose/tratamento farmacológico , Camundongos SCID , 1-Fosfatidilinositol 4-Quinase , Babesia/genética , Atovaquona , Hospedeiro Imunocomprometido
16.
Microbiol Spectr ; 10(6): e0276022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377951

RESUMO

In a library screen of tuberculosis-active compounds for anti-Mycobacterium abscessus activity, we previously identified the synthetic phenylalanine amide MMV688845. In Mycobacterium tuberculosis, this class was shown to target the RpoB subunit of RNA polymerase, engaging a binding site distinct from that of the rifamycins. Due to its bactericidal activity, rifampicin is a key drug for the treatment of tuberculosis (TB). However, this natural product shows poor potency against M. abscessus due to enzymatic modification, and its clinical use is limited. Here, we carried out in vitro microbiological profiling of MMV688845 to determine its attractiveness as a substrate for a chemistry optimization project. MMV688845 was broadly active against the M. abscessus complex, displayed bactericidal against M. abscessus in vitro, and in a macrophage infection model showed additivity with commonly used anti-M. abscessus antibiotics and synergy with macrolides. Analyses of spontaneous resistant mutants mapped resistance to RpoB, confirming that MMV688845 has retained its target in M. abscessus. Together with its chemical tractability, the presented microbiological profiling reveals MMV688845 as an attractive starting point for hit-to-lead development to improve potency and to identify a lead compound with demonstrated oral in vivo efficacy. IMPORTANCE Infections with nontuberculous mycobacteria are an increasing health problem, and only a few new drug classes show activity against these multidrug-resistant bacteria. Due to insufficient therapy options, the development of new drug leads is necessary and should be advanced. The lead compound MMV688845, a substance active against M. abscessus complex, was characterized in depth. In various assays, it showed activity against M. abscessus, synergy with other antibiotics, and bactericidal effects.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Testes de Sensibilidade Microbiana
17.
Med Drug Discov ; 16: 100146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36415887

RESUMO

In malaria endemic countries, coinfections and cotransmissions of different viral pathogens are widely reported. Prior studies have shown that malaria can trigger the Epstein-Barr virus (EBV) reactivation in the body. Besides, the altered immunity due to malaria could increase susceptibility to acquire co-circulating viruses like SARS-CoV-2 or vice versa during pandemic times. The dual burden of pathogens can deteriorate health by inducing disease severity. There are no or limited antiviral therapies available against EBV and SARS-CoV-2. Exploring the novel antimalarials for checking antiviral efficacy and using them in such cases could be the efficient approach of 'hitting two birds with one stone'. We investigated the antiviral potency of medicine for a malaria venture's malaria box containing 400 drug-like or probe-like compounds with experimentally proven antimalarial activity. We utilized a molecular docking approach to screen these compounds against crucial proteins- EBNA1 of EBV and RdRp of SARS-CoV-2 respectively. Based on binding affinity we shortlisted the top three compounds for each protein. Further, for validation of complex stability and binding, the protein-ligand complex is subjected to 100 ns molecular dynamic simulation. All the compounds showed stable binding with respective proteins. Based on binding free energies, involvement of important residues from target sites, and ADMET properties of compounds, the top ligand for each protein is selected. Ligand B (MMV665879) for EBNA1 (ΔGbind = -183.54 kJ/mol) and Ligand E (MMV665918) for RdRp (ΔGbind = -172.23 kJ/mol) could act as potential potent inhibitors. These antimalarial compounds can hence be utilized for further experimental investigation as antivirals against EBV and SARS-CoV-2.

18.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235118

RESUMO

New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4-72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Ferro/uso terapêutico , Ligantes , Quinazolinas , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Tripanossomicidas/química , Trypanosoma/metabolismo , Tripanossomíase Africana/tratamento farmacológico
19.
Parasit Vectors ; 15(1): 329, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123705

RESUMO

BACKGROUND: An innovative approach has been introduced for identifying and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. In the present study, we evaluated the inhibitory effects of Malaria Box (MBox) compounds (n = 8) against the growth of Babesia microti in mice and conducted bioinformatics analysis between the selected hits and the currently used antibabesial drugs, with far-reaching implications for potent combinations. METHODS: A fluorescence assay was used to evaluate the in vivo inhibitory effects of the selected compounds. Bioinformatics analysis was conducted using hierarchical clustering, distance matrix and molecular weight correlation, and PubChem fingerprint. The compounds with in vivo potential efficacy were selected to search for their target in the piroplasm parasites using quantitative PCR (qPCR). RESULTS: Screening the MBox against the in vivo growth of the B. microti parasite enabled the discovery of potent new antipiroplasm drugs, including MMV396693 and MMV665875. Interestingly, statistically significant (P < 0.05) downregulation of cysteine protease mRNA levels was observed in MMV665875-treated Theileria equi in vitro culture in comparison with untreated cultures. MMV396693/clofazimine and MMV665875/atovaquone (AV) showed maximum structural similarity (MSS) with each other. The distance matrix results indicate promising antibabesial efficacy of combination therapies consisting of either MMV665875 and AV or MMV396693 and imidocarb dipropionate (ID). CONCLUSIONS: Inhibitory and hematology assay results suggest that MMV396693 and MMV665875 are potent antipiroplasm monotherapies. The structural similarity results indicate that MMV665875 and MMV396693 have a similar mode of action as AV and ID, respectively. Our findings demonstrated that MBox compounds provide a promising lead for the development of new antibabesial therapeutic alternatives.


Assuntos
Babesia microti , Babesiose , Cisteína Proteases , Malária , Theileria , Animais , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Cisteína Proteases/farmacologia , Reposicionamento de Medicamentos , Imidocarbo/análogos & derivados , Camundongos , Theileria/fisiologia
20.
Front Public Health ; 10: 979808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159265

RESUMO

COVID-19 has affected China's financial markets; accordingly, we investigate the effect of COVID-19 on the risk spillover between fintech and traditional financial industries. Using data from April 25, 2012 to April 22, 2022, which we divide into two parts (before and during the COVID-19 periods), we model the dynamic risk spillover relationship following the DCC-GARCH-BEKK and MMV-MFDFA methods. The results show that: (1) The dynamic relationship between fintech and traditional finance is almost positive most of the time, and the dynamic correlations between fintech and realty (real estate development and operation) are the largest. The dynamic linkage between fintech and traditional finance declines after the COVID-19 outbreak. (2) There exists a risk spillover from fintech to every type of bank before and during the COVID-19 periods. Notably, the risk spillover effect of fintech to large state-owned banks and city commercial banks is the largest separately before and during the COVID-19 periods. Meanwhile, there exist a two-way risk spillover between fintech and almost all other traditional financial industries before and during the COVID-19 periods. (3) Owing to the COVID-19 pandemic, the risk spillover relationship, which is in pairs and in the system become more complex. (4) Regarding the whole system, the correlation in the system is anti-persistent most of the time. Moreover, there are large fluctuations and more complex characteristics during the COVID-19 outbreak. However, the whole system was smooth most of the time before the outbreak of the COVID-19 pandemic.


Assuntos
COVID-19 , COVID-19/epidemiologia , Cidades , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...