Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Theranostics ; 14(13): 5001-5021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267782

RESUMO

Rationale: An impairment of plasma membrane repair has been implicated in various diseases such as muscular dystrophy and ischemia/reperfusion injury. MOTS-c, a short peptide encoded by mitochondria, has been shown to pass through the plasma membrane into the bloodstream. This study determined whether this biological behavior was involved in membrane repair and its underlying mechanism. Methods and Results: In human participants, the level of MOTS-c was positively correlated with the abundance of mitochondria, and the membrane repair molecule TRIM72. In contrast to high-intensity eccentric exercise, moderate-intensity exercise improved sarcolemma integrity and physical performance, accompanied by an increase of mitochondria beneath the damaged sarcolemma and secretion of MOTS-c. Furthermore, moderate-intensity exercise increased the interaction between MOTS-c and TRIM72, and MOTS-c facilitated the trafficking of TRIM72 to the sarcolemma. In vitro studies demonstrated that MOTS-c attenuated membrane damage induced by hypotonic solution, which could be blocked by siRNA-TRIM72, but not AMPK inhibitor. Co-immunoprecipitation study showed that MOTS-c interacted with TRIM72 C-terminus, but not N-terminus. The dynamic membrane repair assay revealed that MOTS-c boosted the trafficking of TRIM72 to the injured membrane. However, MOTS-c itself had negligible effects on membrane repair, which was recapitulated in TRIM72-/- mice. Unexpectedly, MOTS-c still increased the fusion of vesicles with the membrane in TRIM72-/- mice, and dot blot analysis revealed an interaction between MOTS-c and phosphatidylinositol (4,5) bisphosphate [PtdIns (4,5) P2]. Finally, MOTS-c blunted ischemia/reperfusion-induced membrane disruption, and preserved heart function. Conclusions: MOTS-c/TRIM72-mediated membrane integrity improvement participates in mitochondria-triggered membrane repair. An interaction between MOTS-c and plasma lipid contributes to the fusion of vesicles with membrane. Our data provide a novel therapeutic strategy for rescuing organ function by facilitating membrane repair with MOTS-c.


Assuntos
Membrana Celular , Mitocôndrias , Sarcolema , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Masculino , Mitocôndrias/metabolismo , Sarcolema/metabolismo , Transporte Proteico , Proteínas Mitocondriais/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Adulto , Exercício Físico/fisiologia , Camundongos Knockout , Feminino , Proteínas de Transporte/metabolismo , Proteínas de Membrana
2.
Adv Sci (Weinh) ; : e2405620, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321430

RESUMO

Mitochondrial-nuclear communication plays a vital role in maintaining cellular homeostasis. MOTS-c, a short peptide derived from the 12S rRNA of mitochondrial DNA, has been suggested as a retrograde mitochondrial signal. Although recent clinical studies have suggested a possible link between MOTS-c and human cancer, the role of MOTS-c in tumorigenesis has yet to be investigated. Here, MOTS-c levels are found to be reduced in both serum and tumor tissues from ovarian cancer (OC) patients, which are associated with poor patients' prognosis. Exogenous MOTS-c inhibits the proliferation, migration and invasion of OC cells, and induces cell cycle arrest and apoptosis. Mechanistically, MOTS-c interacts with LARS1 and promotes its ubiquitination and proteasomal degradation. In addition, USP7 was identified as a deubiquitinase of LARS1, and MOTS-c can attenuates USP7-mediated LARS1 deubiquitination by competing with USP7 for binding to LARS1. Besides, LARS1 was found to be increased and play an important oncogenic function in OC. More importantly, MOTS-c displays a marked anti-tumor effect on OC growth without systemic toxicity in vivo. In conclusion, this study reveals a crucial role of MOTS-c in OC and provides a possibility for MOTS-c as a therapeutic target for the treatment of this manlignacy.

3.
J Agric Food Chem ; 72(38): 20944-20958, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39259217

RESUMO

Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.


Assuntos
Apoptose , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Mitocôndrias , Estresse Oxidativo , Cofator PQQ , Animais , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Cofator PQQ/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/tratamento farmacológico , Humanos , Apoptose/efeitos dos fármacos , Masculino , Lesões por Radiação/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle , Pulmão/efeitos da radiação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos
4.
Front Physiol ; 15: 1420276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282091

RESUMO

Skeletal muscle hypertrophy is generally associated with a fast-to-slow phenotypic adaptation in both human and rodent models. Paradoxically, this phenotypic shift is not paralleled by a concomitant increase in mitochondrial content and aerobic markers that would be expected to accompany a slow muscle phenotype. To understand the temporal response of the mitochondrial life cycle (i.e., biogenesis, oxidative phosphorylation, fission/fusion, and mitophagy/autophagy) to hypertrophic stimuli, in this study, we used the functional overload (FO) model in adult female rats and examined the plantaris muscle responses at 1 and 10 weeks. As expected, the absolute plantaris muscle mass increased by ∼12 and 26% at 1 and 10 weeks following the FO procedure, respectively. Myosin heavy-chain isoform types I and IIa significantly increased by 116% and 17%, respectively, in 10-week FO plantaris muscles. Although there was a general increase in protein markers associated with mitochondrial biogenesis in acute FO muscles, this response was unexpectedly sustained under 10-week FO conditions after muscle hypertrophy begins to plateau. Furthermore, the early increase in mito/autophagy markers observed under acute FO conditions was normalized by 10 weeks, suggesting a cellular environment favoring mitochondrial biogenesis to accommodate the aerobic demands of the plantaris muscle. We also observed a significant increase in the expression of mitochondrial-, but not nuclear-, encoded oxidative phosphorylation (OXPHOS) proteins and peptides (i.e., humanin and MOTS-c) under chronic, but not acute, FO conditions. Taken together, the temporal response of markers related to the mitochondrial life cycle indicates a pattern of promoting biogenesis and mitochondrial protein expression to support the energy demands and/or enhanced neural recruitment of chronically overloaded skeletal muscle.

5.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201408

RESUMO

Adrenal tumors, such as adrenocortical carcinoma (ACC), adrenocortical adenoma (ACA), and pheochromocytoma (PCC) are complex diseases with unclear causes and treatments. Mitochondria and mitochondrial-derived peptides (MDPs) are crucial for cancer cell survival. The primary aim of this study was to analyze samples from different adrenal diseases, adrenocortical carcinoma, adrenocortical adenoma, and pheochromocytoma, and compare them with normal adrenal tissue to determine whether the expression levels of the mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) gene and protein vary between different types of adrenal tumors compared to healthy controls using qPCR, ELISA, and IHC methods. Results showed decreased MOTS-c mRNA expression in all adrenal tumors compared to controls, while serum MOTS-c protein levels increased in ACA and PCC but not in ACC. The local distribution of MOTS-c protein in adrenal tissue was reduced in all tumors. Notably, MOTS-c protein expression declined with ACC progression (stages III and IV) but was unrelated to patient age or sex. Tumor size and testosterone levels positively correlated with MOTS-c mRNA but negatively with serum MOTS-c protein. Additionally, serum MOTS-c protein correlated positively with glucose, total cholesterol, HDL, LDL, and SHGB levels. These findings suggest disrupted expression of MOTS-c in the spectrum of adrenal diseases, which might be caused by mechanisms involving increased mitochondrial dysfunction and structural changes in the tissue associated with disease progression. This study provides a detailed examination of MOTS-c mRNA and protein in adrenal tumors, indicating the potential role of MDPs in tumor biology and progression.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Neoplasias das Glândulas Suprarrenais/sangue , Adulto , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Feocromocitoma/sangue , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Regulação Neoplásica da Expressão Gênica , Idoso , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Adenoma Adrenocortical/patologia , Adenoma Adrenocortical/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue
6.
Diabetol Metab Syndr ; 16(1): 200, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160573

RESUMO

BACKGROUND: MOTS-c is known as mitochondrial open reading frame (ORF) of the twelve S c, produced by a small ORF-encoded peptides (SEPs) in mitochondrial 12S rRNA region. There is growing evidence that MOTS-c has a strong relationship with the expression of inflammation- and metabolism-associated genes and metabolic homeostasis, and even offering some protection against insulin resistance (IR). However, studies have reported inconsistent correlations between different population characteristics and MOTS-c levels. This meta-analysis aims to elucidate MOTS-c levels in physiological and pathological states, and its correlation with metabolic features in various physiological states. METHODS: We conducted a systematic review and meta-analysis to synthesize the evidence of changes in blood MOTS-c concentration, and any association between MOTS-c and population characteristic. The Web of Science, PubMed, EMBASE, CNKI, WANGFANG and VIP databases were searched from inception to April 2023. The statistical analysis was summarized using the standardized mean difference (SMD) and 95% confidence interval (95% CIs). Pearson correlation coefficient was used to analyze the correlation and generate forest plots through a random-effects model. Additional analyses as sensitivity and subgroup analyses were performed to identify the origins of heterogeneity. Publication bias was retrieved by means of a funnel-plot analysis and Egger's test. All related statistical analyses were performed using Revman 5.3 and Stata 15 statistical software. RESULT: There are 6 case-control studies and 1 cross-sectional study (11 groups) including 602 participants in our current meta-analysis. Overall analysis results showed plasma MOTS-c concentration in diabetes and obesity patients was significantly reduced (SMD = - 0.37; 95% CI- 0.53 to - 0.20; P < 0.05). After subgroup analysis, the present analysis has yielded opposite results for MOTS-c changes in obesity (SMD = 0.51; 95% CI 0.21 to 0.81; P < 0.05) and type 2 diabetes mellitus (T2DM) (SMD = - 0.89; 95% CI - 1.12 to - 0.65; P < 0.05) individuals. Moreover, the correlation analysis was performed to identify that MOTS-c levels were significantly positively correlated with TC (r = 0.29, 95% CI 0.20 to 0.38) and LDL-c (r = 0.30, 95% CI 0.22 to 0.39). The subgroup analysis results showed that MOTS-c decreased significantly in patients with diabetes (SMD = - 0.89; 95% CI- 1.12 to - 0.65; P < 0.05). In contrast, the analysis result for obesity persons (BMI > 28 kg/ m2) was statistically significant after overweight people (BMI = 24-28 kg/ m2) were excluded (SMD = 0.51; 95% CI 0.21 to 0.81; P < 0.05), which is completely different from that of diabetes. Publication bias was insignificant (Egger's test: P = 0.722). CONCLUSION: Circulating MOTS-c level was significantly reduced in diabetic individuals but was increased significantly in obesity patients. The application of monitoring the circulating levels variability of MOTS-c in routine screening for obesity and diabetes is prospects and should be taken into consideration as an important index for the early prediction and prevention of metabolic syndrome in the future. PROSPERO registration number CRD42021248167.

7.
Blood Purif ; 53(10): 824-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111290

RESUMO

INTRODUCTION: Uremic patients exhibit remarkably increased rates of mortality and cardiovascular (CV) events, but risk prediction in this setting remains difficult. Systemic mitochondrial dysfunction is pervasive in end-stage kidney disease and may contribute to CV complications. We tested the clinical significance of circulating MOTS-c, a small mitochondrial-derived peptide, as a biomarker for improving mortality and CV risk prediction in hemodialysis (HD) patients. METHODS: We conducted a prospective, observational, multicenter study on 94 prevalent HD patients. The study endpoint was a composite of all-cause mortality and non-fatal CV events. The diagnostic and prognostic capacities of predictive models based on cohort-related risk factors were tested before and after the inclusion of MOTS-c. RESULTS: MOTS-c levels were higher in HD patients than in controls (p < 0.001) and even more elevated (p = 0.01) in the 53 individuals experiencing the combined endpoint during follow-up (median duration: 26.5 months). MOTS-c was independently associated with the endpoint at either multivariate logistic (OR 1.020; 95% CI: 1.011-1.109; p = 0.03) or Cox regression analyses (HR 1.004; 95% CI: 1.000-1.025; p = 0.05) and the addition of this biomarker to prognostic models including the other cohort-related risk predictors (age, left ventricular mass, evidence of diastolic dysfunction, diabetes, pulse pressure) significantly improved the calibration, risk variability explanation, discrimination (receiver operating characteristic area under the curve from 0.727 to 0.743; C-index from 0.658 to 0.700), and particularly, the overall reclassification capacity (NRI 15.87%; p = 0.01). CONCLUSIONS: In HD patients, the mitochondrial-derived peptide MOTS-c may impart significant information to refine CV risk prediction, beyond cohort-related risk factors. Future investigations are needed to generalize these findings in larger and more heterogeneous cohorts.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Falência Renal Crônica , Diálise Renal , Humanos , Diálise Renal/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/sangue , Estudos Prospectivos , Biomarcadores/sangue , Falência Renal Crônica/terapia , Falência Renal Crônica/sangue , Falência Renal Crônica/mortalidade , Falência Renal Crônica/complicações , Fatores de Risco , Proteínas Mitocondriais/sangue , Prognóstico , Estudos de Coortes
8.
Drug Des Devel Ther ; 18: 2971-2987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050800

RESUMO

Background: Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c. Methods: Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results: ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling. Conclusion: TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid ß-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Transcriptoma , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia
9.
Reprod Toxicol ; 129: 108674, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39079574

RESUMO

Male patients who undergo prepubertal chemotherapy face the dual problems of fertility preservation in adulthood, including low testosterone, hypersexual function, and infertility. Humanin, as a small polypeptide coded within the mitochondrial DNA, with the mitochondrial short open reading frame named MOTS-c, both was believed to regulate mitochondrial homeostasis, be anti-inflammatory, improve metabolism, anti-apoptosis, and multiple pharmacological effects. However, there exists little evidence that reported Humanin and MOTS-c 's effects on moderating male spermatogenic function of patients after prepubertal chemotherapy. Here, we found that in vivo, mitochondrial polypeptides Humanin analog (HNG) and MOTS-c efficaciously protected the testicular spermatogenic function from reproductive injury. Moreover, transcriptomic sequencing analysis was performed to verify the differentially expressed genes such as Piwil2, AGT (angiotensinogen), and PTGDS (glycoprotein prostaglandin D2 synthase), which are related to the regulation of male reproductive function of male mice induced by prepubertal chemotherapy. Collectively, our data revealed that both Humanin analogs HNG and MOTS-c are the feasible approaches attached to the protective effect on the male reproductive function damaged by prepubertal chemotherapy.


Assuntos
Ciclofosfamida , Espermatogênese , Testículo , Masculino , Animais , Ciclofosfamida/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Espermatogênese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Antineoplásicos Alquilantes/toxicidade , Camundongos
10.
Antioxidants (Basel) ; 13(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790718

RESUMO

Radiation pneumonitis (RP) is a prevalent and fatal complication of thoracic radiotherapy due to the lack of effective treatment options. RP primarily arises from mitochondrial injury in lung epithelial cells. The mitochondrial-derived peptide MOTS-c has demonstrated protective effects against various diseases by mitigating mitochondrial injury. C57BL/6 mice were exposed to 20 Gy of lung irradiation (IR) and received daily intraperitoneal injections of MOTS-c for 2 weeks. MOTS-c significantly ameliorated lung tissue damage, inflammation, and oxidative stress caused by radiation. Meanwhile, MOTS-c reversed the apoptosis and mitochondrial damage of alveolar epithelial cells in RP mice. Furthermore, MOTS-c significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells and primary mouse lung epithelial cells. Mechanistically, MOTS-c increased the nuclear factor erythroid 2-related factor (Nrf2) level and promoted its nuclear translocation. Notably, Nrf2 deficiency abolished the protective function of MOTS-c in mice with RP. In conclusion, MOTS-c alleviates RP by protecting mitochondrial function through an Nrf2-dependent mechanism, indicating that MOTS-c may be a novel potential protective agent against RP.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38716540

RESUMO

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

12.
Histochem Cell Biol ; 161(6): 449-460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430258

RESUMO

The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent ß and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Camundongos , Ratos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , Glucose/farmacologia , Linhagem Celular , Insulina/metabolismo , Glucagon/metabolismo
13.
Neurosci Lett ; 826: 137722, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462167

RESUMO

MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and MOTS-c level is inversely correlated with markers of obesity. Obesity is a risk factor for male reproductive physiology and is expressed as an important cause of infertility. In this study, we aimed to determine the effects of MOTS-c, which has been proven in the hypothalamus and testicles, on the actors involved in the reproductive axis. In the study, 80 male Wistar-Albino rats were divided into two main groups, obese and non-obese (n = 40). Rats in the first main group were fed with fatty diet feed and obesity was induced. The second main group was fed with normal diet feed. Each main group was divided into 4 subgroups (Control, Sham, 10 and 100 µM MOTS-c). The lateral ventricles of the animals in the treatment groups were infused with 10 and 100 µM MOTS-c (solvent in Sham group) for 14 days. At the end of the experiment, hypothalamic Gonadotropin-Releasing Hormone (GnRH) gene expression level, serum testosterone, Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) levels were determined. MOTS-c infusion caused an increase in GnRH mRNA, protein expression levels and serum testosterone, LH and FSH levels in obese and non-obese rats (p < 0.05). MOTS-c administration more significantly upregulated hormone levels in non-obese rats (p < 0.05). MOTS-c administration increases these hormones, suggesting that MOTS-c may stimulate the reproductive axis. Our results reveal that MOTS-c plays a role in the central regulation of reproduction, as well as causes increased LH, FSH and testosterone release.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Ratos , Masculino , Animais , Hormônio Foliculoestimulante/metabolismo , Ratos Wistar , Hormônio Liberador de Gonadotropina/metabolismo , Testosterona/farmacologia , Fatores de Transcrição , Obesidade
14.
Theranostics ; 14(4): 1561-1582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389837

RESUMO

Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.


Assuntos
Endotoxemia , Traumatismos Cardíacos , Animais , Camundongos , Actinas , Domínio Catalítico , DNA , Proteína Quinase Ativada por DNA , Células Endoteliais , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Profilinas , Proteômica , Pseudópodes
15.
Am J Physiol Endocrinol Metab ; 326(3): E207-E214, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170165

RESUMO

Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c), a mitochondrial microprotein, has been described as a novel regulator of glucose and lipid metabolism. In addition to its role as a metabolic regulator, MOTS-c prevents skeletal muscle atrophy in high fat-fed mice. Here, we examined the preventive effect of MOTS-c on skeletal muscle mass, using an immobilization-induced muscle atrophy model, and explored its underlying mechanisms. Male C57BL/6J mice (10 wk old) were randomly assigned to one of the three experimental groups: nonimmobilization control group (sterilized water injection), immobilization control group (sterilized water injection), and immobilization and MOTS-c-treated group (15 mg/kg/day MOTS-c injection). We used casting tape for the immobilization experiment. After 8 days of the experimental period, skeletal muscle samples were collected and used for Western blotting, RNA sequencing, and lipid and collagen assays. Immobilization reduced ∼15% of muscle mass, whereas MOTS-c treatment attenuated muscle loss, with only a 5% reduction. MOTS-c treatment also normalized phospho-AKT, phospho-FOXO1, and phospho-FOXO3a expression levels and reduced circulating inflammatory cytokines, such as interleukin-1b (IL-1ß), interleukin-6 (IL-6), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1), in immobilized mice. Unbiased RNA sequencing and its downstream analyses demonstrated that MOTS-c modified adipogenesis-modulating gene expression within the peroxisome proliferator-activated receptor (PPAR) pathway. Supporting this observation, muscle fatty acid levels were lower in the MOTS-c-treated group than in the casted control mice. These results suggest that MOTS-c treatment inhibits skeletal muscle lipid infiltration by regulating adipogenesis-related genes and prevents immobilization-induced muscle atrophy.NEW & NOTEWORTHY MOTS-c, a mitochondrial microprotein, attenuates immobilization-induced skeletal muscle atrophy. MOTS-c treatment improves systemic inflammation and skeletal muscle AKT/FOXOs signaling pathways. Furthermore, unbiased RNA sequencing and subsequent assays revealed that MOTS-c prevents lipid infiltration in skeletal muscle. Since lipid accumulation is one of the common pathologies among other skeletal muscle atrophies induced by aging, obesity, cancer cachexia, and denervation, MOTS-c treatment could be effective in other muscle atrophy models as well.


Assuntos
Micropeptídeos , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Água , Lipídeos
16.
Cell Rep ; 43(1): 113587, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206815

RESUMO

Nonalcoholic steatohepatitis (NASH) is a metabolism-associated fatty liver disease with accumulated mitochondrial stress, and targeting mitochondrial function is a potential therapy. The mitochondrial genome-encoded bioactive peptide MOTS-c plays broad physiological roles, but its effectiveness and direct targets in NASH treatment are still unclear. Here, we show that long-term preventive and short-term therapeutic effects of MOTS-c treatments alleviate NASH-diet-induced liver steatosis, cellular apoptosis, inflammation, and fibrosis. Mitochondrial oxidative capacity and metabolites profiling analysis show that MOTS-c significantly reverses NASH-induced mitochondrial metabolic deficiency. Moreover, we identify that MOTS-c directly interacts with the BH3 domain of antiapoptotic B cell lymphoma-2 (Bcl-2), increases Bcl-2 protein stability, and suppresses Bcl-2 ubiquitination. By using a Bcl-2 inhibitor or adeno-associated virus (AAV)-mediated Bcl-2 knockdown, we further confirm that MOTS-c improves NASH-induced mitochondrial dysfunction, inflammation, and fibrosis, which are dependent on Bcl-2 function. Therefore, our findings show that MOTS-c is a potential therapeutic agent to inhibit the progression of NASH.


Assuntos
Genoma Mitocondrial , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Inflamação/patologia , Fibrose , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL
17.
Neurol Res ; 46(2): 165-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899006

RESUMO

BACKGROUND: Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain. METHODS: Male Kunming mice (8-10 weeks-old) were intraplantar injected with formalin, capsaicin, λ-Carrageenan and complete Freund adjuvant (CFA) to establish acute and chronic inflammatory pain. The effects of MOTS-c on the above inflammatory pain mice and its underlying mechanisms were examined by behavioral tests, quantitative polymerase chain reaction (qPCR), western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS: Behavioral experiments investigated the potential beneficial effects of MOTS-c on multiple acute and chronic inflammatory pain in mice. The results showed that MOTS-c treatment produced potent anti-allodynic effects in formalin-induced acute inflammatory pain, capsaicin-induced nocifensive behaviors and λ-Carrageenan/CFA-induced chronic inflammatory pain model. Further mechanistic studies revealed that central MOTS-c treatment significantly ameliorated CFA-evoked the release of inflammatory factors and activation of glial cells and neurons in the spinal dorsal horn. Moreover, peripheral MOTS-c treatment reduced CFA-evoked inflammatory responses in the surface structure of hindpaw skin, accompanied by inhibiting excitation of peripheral calcitonin gene-related peptide (CGRP) and P2X3 nociceptive neurons. CONCLUSIONS: The present study indicates that MOTS-c may serve as a promising therapeutic target for inflammatory pain.


Assuntos
Capsaicina , Dor Crônica , Camundongos , Masculino , Animais , Carragenina/toxicidade , Carragenina/uso terapêutico , Capsaicina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hiperalgesia/metabolismo , Dor Crônica/complicações , Adjuvante de Freund/toxicidade , Formaldeído/toxicidade , Formaldeído/uso terapêutico
18.
Peptides ; 172: 171147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160808

RESUMO

Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Masculino , Feminino , Gravidez , Humanos , Hipoglicemiantes , Timina , Peptídeos/metabolismo , DNA Mitocondrial/genética , RNA Ribossômico/genética , Guanina
19.
Artigo em Inglês | MEDLINE | ID: mdl-38141139

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) pathogenesis is a common complication of diabetes, but effective treatments remain limited. Mitochondrial-derived peptide MOTS-c has shown therapeutic promise in animal models of various heart diseases, but its efficacy in DCM is unknown. This study investigates the effects of MOTS-c treatment in a mouse model of type 1 diabetes-induced DCM. METHODS: Type 1 diabetes (T1DM) was induced in mice by streptozotocin (STZ) injection. After diabetes establishment, the mice were randomly dividend into two groups treated with or without MOTS-c peptide, which was administered subcutaneously by osmotic pump for 12 weeks. At the end of the experiment, cardiac function, histology, and molecular changes were determined. RESULTS: The results showed that diabetic mice exhibited significant cardiac dysfunction, dilatation, and adverse cardiac remodeling. MOTS-c treatment markedly ameliorated these diabetes-associated myocardial function and structure abnormalities. Additionally, MOTS-c reversed AMPK signaling deactivation and inhibited inflammation in the diabetic heart. CONCLUSIONS: Our data demonstrated a protective effect of MOTS-c against diabetic cardiomyopathy potentially by activating the AMPK pathway and inhibiting inflammation. These findings demonstrate the therapeutic efficacy of MOTS-c for diabetic cardiomyopathy and warrant further investigation into its clinical potential.

20.
Chron Respir Dis ; 20: 14799731231220058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112134

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbation (ECOPD) alters the natural course of the disease. To date, only C-reactive protein has been used as a biomarker in ECOPD, but it has important limitations. The mitochondria release peptides (Humanin (HN), FGF-21, GDF-15, MOTS-c and Romo1) under certain metabolic conditions. Here, we aimed to evaluate the pathophysiologic, diagnostic and prognostic value of measuring serum mitochondrial peptides at hospital admission in patients with ECOPD. METHODS: A total of 51 consecutive patients admitted to our hospital for ECOPD were included and followed for 1 year; in addition, 160 participants with stable COPD from our out-patient clinic were recruited as controls. RESULTS: Serum FGF-21 (p < .001), MOTS-c (p < .001) and Romo1 (p = .002) levels were lower, and GDF-15 (p < .001) levels were higher, in patients with ECOPD than stable COPD, but no differences were found in HN. In receiver operating characteristic analysis, MOTS-c (AUC 0.744, 95% CI 0.679-0.802, p < .001) and GDF-15 (AUC 0.735, 95% CI 0.670-0.793, p < .001) had the best diagnostic power for ECOPD, with a diagnostic accuracy similar to that of C-RP (AUC 0.796 95% IC 0.735-0.848, p < .001). FGF-21 (AUC 0.700, 95% CI 0.633-0.761, p < .001) and Romo1 (AUC 0.645 95% CI 0.573-0.712, p = .001) had lower diagnostic accuracy. HN levels did not differentiate patients with ECOPD versus stable COPD (p = .557). In Cox regression analysis, HN (HR 2.661, CI95% 1.009-7.016, p = .048) and MOTS-c (HR 3.441, CI95% 1.252-9.297, p = .016) levels exceeding mean levels were independent risk factors for re-admission. CONCLUSIONS: Most mitochondrial peptides are altered in ECOPD, as compared with stable COPD. MOTS-c and GDF15 levels have a diagnostic accuracy similar to C-RP for ECOPD. HN and MOTS-c independently predict future re-hospitalization.


Assuntos
Fator 15 de Diferenciação de Crescimento , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Estudos Prospectivos , Hospitalização , Mitocôndrias , Hospitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...