Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Hortic ; 4(1): 29, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103914

RESUMO

Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.

2.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366355

RESUMO

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Mutagênese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Puccinia/fisiologia , Plantas Geneticamente Modificadas
3.
J Exp Bot ; 75(5): 1615-1632, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988280

RESUMO

Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta da Proteína de Ligação ao GTP , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Fosforilação
4.
Cell Rep ; 43(1): 113617, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150366

RESUMO

In plant roots, the identity of the stem cell niche (SCN) is maintained by an auxin gradient with its maximum in the quiescent center (QC). Optimal levels of auxin signaling are essential for root SCN identity, but the regulatory mechanisms that control this pathway in root are largely unknown. Here, we find that the zinc finger transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates root SCN identity by negative feedback of auxin signaling in root tips. Mutation and overexpression of STOP1 both affect QC cell division and distal stem cell differentiation in the root. We find that auxin treatment stabilizes STOP1 via MPK3/6-dependent phosphorylation. Accumulating STOP1 can compete with AUX/IAAs to interact with, and enhance the repressive activity of, auxin-repressive response factor ARF2. Overall, we show that the MPK3/6-STOP1-ARF2 module prevents excessive auxin signaling in the presence of auxin to maintain root SCN identity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas , Nicho de Células-Tronco , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
5.
Physiol Mol Biol Plants ; 29(9): 1247-1259, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024949

RESUMO

Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01383-9.

6.
Plant Physiol Biochem ; 203: 108078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832368

RESUMO

Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Serotonina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Proteínas de Arabidopsis/genética , Ciclo Celular , Regulação da Expressão Gênica de Plantas
7.
Plants (Basel) ; 12(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571011

RESUMO

Glucosinolates and their degradation products have a wide range of actions and are important components of plant defense. NSP2 (nitrile-specific protein 2) is a key regulator in the breakdown process of glucosinolates. However, the precise function of NSP2 in plant disease resistance beyond its role in glucosinolate degradation is still unclear. In this study, we discovered that NSP2 which was induced by Pst DC3000, influenced PR genes expression and reactive oxygen burst. Additionally, omics analysis revealed that NSP2 was engaged in plant-pathogen interaction and several hormone signal transduction pathways. Furthermore, immunoprecipitation-tandem mass spectrometry analysis (IP-MS), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation demonstrated that NSP2 interacts with MPK3. Genetic analysis shows that NSP2 may be a function downstream of MPK3. Upon pathogen inoculation, NSP2 protein levels increase while MPK3 protein levels decrease. Moreover, the level of phosphorylated NSP2 decreases. Taken together, this study sheds light on a new mode of synergistic action between NSP2 and MPK3 in the disease resistance process.

8.
J Plant Physiol ; 287: 154049, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423042

RESUMO

Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Ácido Fusárico/farmacologia , Ácido Fusárico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Micotoxinas/metabolismo , Morte Celular
9.
Plant Commun ; 4(6): 100628, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37221824

RESUMO

The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(19): e2218503120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126711

RESUMO

The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades. On the one hand, auxin positively regulates the transcription of DPa via AUXIN RESPONSE FACTOR 7 and ARF19. On the other hand, auxin enhances the protein stability of DPa through MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)/MPK6-mediated phosphorylation. Consistently, mutation of the identified three threonine residues (Thr10, Thr25, and Thr227) of DPa to nonphosphorylated form alanine (DPa3A) highly decreased the phosphorylation level of DPa, which decreased its protein stability and affected the maintenance of root DSC identity. Taken together, this study provides insight into the molecular mechanism of how auxin regulates root distal stem cell identity through the dual regulations of DPa at both transcriptional and posttranslational levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Raízes de Plantas/metabolismo , Células-Tronco/metabolismo
11.
Mol Plant ; 16(6): 1016-1030, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37077045

RESUMO

The nuclear pore complex (NPC), the sole exchange channel between the nucleus and cytoplasm, is composed of several subcomplexes, among which the central barrier determines the permeability/selectivity of the NPC to dominate the nucleocytoplasmic trafficking essential for many important signaling events in yeast and mammals. How plant NPC central barrier controls selective transport is a crucial question remaining to be elucidated. In this study, we uncovered that phase separation of the central barrier is critical for the permeability and selectivity of plant NPC in the regulation of various biotic stresses. Phenotypic assays of nup62 mutants and complementary lines showed that NUP62 positively regulates plant defense against Botrytis cinerea, one of the world's most disastrous plant pathogens. Furthermore, in vivo imaging and in vitro biochemical evidence revealed that plant NPC central barrier undergoes phase separation to regulate selective nucleocytoplasmic transport of immune regulators, as exemplified by MPK3, essential for plant resistance to B. cinerea. Moreover, genetic analysis demonstrated that NPC phase separation plays an important role in plant defense against fungal and bacterial infection as well as insect attack. These findings reveal that phase separation of the NPC central barrier serves as an important mechanism to mediate nucleocytoplasmic transport of immune regulators and activate plant defense against a broad range of biotic stresses.


Assuntos
Poro Nuclear , Plantas , Animais , Transporte Ativo do Núcleo Celular , Poro Nuclear/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mamíferos
12.
Plants (Basel) ; 12(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36986973

RESUMO

The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.

13.
Plant Sci ; 325: 111484, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36195119

RESUMO

Sugar as a signaling molecule has attracted lots of attention. Even though several kinases have been shown to play a crucial role in the sugar signaling and response to exogenous D-glucose (Glc), the information on the involvement of MAP kinase cascade in sugar signaling has remain largely unexplored. In this report we demonstrate that MAP kinase signaling is essential for sensitivity to higher concentrations of D-Glc in Arabidopsis. We found that D-Glc activates MAP kinases, MPK3 and MPK6 in a concentration and time-dependent manner. The mutants of mpk3 and mpk6 display hyposensitivity to 6% D-Glc during seed germination, cotyledon greening and root growth. Interestingly, the altered sensitivity to increased D-Glc is severely enhanced by addition of 1% Sucrose in the media. Our study also deciphered the role of one of the Glc sensor proteins, RGS1 that interacts and gets phosphorylated at its C-terminal domain by MPK3 and MPK6. Overall our study provides a new insight on the involvement of MAP kinases in association with G-proteins that might regulate sugar signaling and sugar responsive growth and development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas RGS , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
15.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907403

RESUMO

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/metabolismo
16.
J Integr Plant Biol ; 64(8): 1531-1542, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652263

RESUMO

Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MAPK3 or MPK3) and MPK6 play important signaling roles in plant immunity and growth/development. MAPK KINASE4 (MKK4) and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes. YODA (YDA), also known as MAPK KINASE KINASE4 (MAPKKK4), is upstream of MKK4/MKK5 and forms a complete MAPK cascade (YDA-MKK4/MKK5-MPK3/MPK6) in regulating plant growth and development. In plant immunity, MAPKKK3 and MAPKKK5 function redundantly upstream of the same MKK4/MKK5-MPK3/MPK6 module. However, the residual activation of MPK3/MPK6 in the mapkkk3 mapkkk5 double mutant in response to flg22 pathogen-associated molecular pattern (PAMP) treatment suggests the presence of additional MAPKKK(s) in this MAPK cascade in signaling plant immunity. To investigate whether YDA is also involved in plant immunity, we attempted to generate mapkkk3 mapkkk5 yda triple mutants. However, it was not possible to recover one of the double mutant combinations (mapkkk5 yda) or the triple mutant (mapkkk3 mapkkk5 yda) due to a failure of embryogenesis. Using the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9) approach, we generated weak, N-terminal deletion alleles of YDA, yda-del, in a mapkkk3 mapkkk5 background. PAMP-triggered MPK3/MPK6 activation was further reduced in the mapkkk3 mapkkk5 yda-del mutant, and the triple mutant was more susceptible to pathogen infection, suggesting YDA also plays an important role in plant immune signaling. In addition, MAPKKK5 and, to a lesser extent, MAPKKK3 were found to contribute to gamete function and embryogenesis, together with YDA. While the double homozygous mapkkk3 yda mutant showed the same growth and development defects as the yda single mutant, mapkkk5 yda double mutant and mapkkk3 mapkkk5 yda triple mutants were embryo lethal, similar to the mpk3 mpk6 double mutants. These results demonstrate that YDA, MAPKKK3, and MAPKKK5 have overlapping functions upstream of the MKK4/MKK5-MPK3/MPK6 module in both plant immunity and growth/development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Desenvolvimento Vegetal , Imunidade Vegetal/genética
17.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409147

RESUMO

MicroRNAs (miRNAs) are one of the prime regulators of gene expression. The recruitment of hyponastic leaves 1 (HYL1), a double-stranded RNA binding protein also termed as DRB1, to the microprocessor complex is crucial for accurate primary-miRNA (pri-miRNA) processing and the accumulation of mature miRNA in Arabidopsis thaliana. In the present study, we investigated the role of the MAP kinase-mediated phosphorylation of AtHYL1 and its sub-cellular activity. AtMPK3 specifically phosphorylates AtHYL1 at the evolutionarily conserved serine-42 present at the N-terminal regions and plays an important role in its nuclear-cytosolic shuttling. Additionally, we identified that AtHYL1 is cleaved by trypsin-like proteases into an N-terminal fragment, which renders its subcellular activities. We, for the first time, report that the dimerization of AtHYL1 not only takes place in the nucleus, but also in the cytosol, and the C-terminal of AtHYL1 has a role in regulating its stability, as well as its subcellular localization. AtHYL1 is hyper-phosphorylated in mpk3 mutants, leading to higher stability and reduced degradation. Our data show that AtMPK3 is a negative regulator of AtHYL1 protein stability and that the AtMPK3-induced phosphorylation of AtHYL1 leads to its protein degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Estabilidade Proteica , Processamento Pós-Transcricional do RNA
18.
J Plant Physiol ; 271: 153664, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279560

RESUMO

Glutathione (GSH) plays a fundamental role in plant defense. Recent reports showed that enhanced GSH content activates mitogen-activated protein kinases (MPKs). However, the molecular mechanism behind this GSH-mediated MPKs expression during environmental challenges is unexplored. Here, we found that under control and combined abiotic stress-treated conditions, GSH feeding activates MPK3 expression in Arabidopsis thaliana by inducing its promoter, as established through the promoter activation assay. Additionally, transgenic A. thaliana overexpressing the LeMPK3 gene (AtMPK3 line) showed increased γ-ECS expression, which was decreased in mpk3, the MPK3-depleted mutant. An in-gel kinase assay exhibited hyperphosphorylation of Myelin Basic Protein (MBP) in the GSH-fed AtMPK3 transgenic line. Under control and combined abiotic stress treated conditions, expression of transcription factor WRKY40 binding to MPK3 promoter was up-regulated under enhanced GSH condition. Interestingly, GSH feeding was rendered ineffective in altering MPK3 expression in the Atwrky40 mutant, emphasizing the involvement of WRKY40 in GSH-MPK3 interplay. This was further confirmed by a wrky40 co-transformation assay. The immunoprecipitation assay followed by ChIP-qPCR showed a significant increase in the binding of WRKY40 to MPK3 promoter, which further established MPK3-WRKY40 association upon GSH feeding. In conclusion, this study demonstrated that GSH modulates MPK3 expression via WRKY40 in response to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 73(7): 2190-2205, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032388

RESUMO

Arabidopsis thaliana mitogen-activated protein kinases 3 and 6 (MPK3/6) are activated transiently during pathogen-associated molecular pattern-triggered immunity (PTI) and durably during effector-triggered immunity (ETI). The functional differences between these two kinds of activation kinetics and how they coordinate the two layers of plant immunity remain poorly understood. Here, by suppressor analyses, we demonstrate that ETI-mediating nucleotide-binding domain leucine-rich repeat receptors (NLRs) and the NLR signaling components NDR1 and EDS1 can promote the salicylic acid sector of defense downstream of MPK3 activity. Moreover, we provide evidence that both sustained and transient MPK3/6 activities positively control the expression of several NLR genes, including AT3G04220 and AT4G11170. We further show that NDR1 and EDS1 contribute to the up-regulation of these two NLRs in both an ETI and a PTI context. Remarkably, whereas in ETI MPK3/6 activities are dependent on NDR1 and EDS1, they are not in PTI, suggesting crucial differences in the two signaling pathways. Finally, we demonstrate that expression of the NLR AT3G04220 is sufficient to induce expression of defense genes from the salicylic acid branch. Overall, this study expands our knowledge of MPK3/6 functions during immunity and provides new insights into the intricate interplay of PTI and ETI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
20.
New Phytol ; 233(4): 1732-1749, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859454

RESUMO

Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...