Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 140: 112898, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39128417

RESUMO

OBJECTIVE: Disorders of lipid oxidation play an important role in organ damage, and lipid metabolites are associated with inflammation and coagulation dysfunction in sepsis. However, the specific molecular mechanism by which lipid metabolism-related proteins regulate sepsis is still unclear. The aim of this study is to investigate the role of mortality factor 4-like protein 1 (MORF4L1, also called MRG15), a hepatic lipid metabolism related gene, in sepsis-induced liver injury. METHODS: In the mouse sepsis models established by cecal ligation and puncture (CLP) and lipopolysaccharide (LPS), the impact of pretreatment with the MRG15 inhibitor argatroban on sepsis-related liver injury was investigated. In the LPS-induced hepatocyte sepsis cell model, the effects of MRG15 overexpression or knockdown on hepatic inflammation and lipid metabolism were studied. Additionally, in a co-culture system of hepatocytes and macrophages, the influence of MRG15 knockdown in hepatocytes on the synthesis and secretion of inflammation-related protein PCSK9 as well as its effect on macrophage activation were examined. RESULTS: Studies have shown that MRG15 expression was increased in septicemia mice and positively correlated with lipid metabolism and inflammation. However, knockdown of MRG15 ameliorates sepsis-induced hepatocyte injury. Increased MRG15 in LPS-stimulated hepatocytes promotes PCSK9 synthesis and secretion, which induces macrophage M1 polarization and exacerbates the inflammatory response. Agatroban, an inhibitor of MRG15, ameliorates sepsis-induced liver injury in mice by inhibiting MRG15-induced lipid metabolism disorders and inflammatory responses. CONCLUSIONS: In sepsis, increased MRG15 expression in hepatocytes leads to disturbed hepatic lipid metabolism and induces macrophage M1 polarization by secreting PCSK9, ultimately exacerbating liver injury.


Assuntos
Hepatócitos , Metabolismo dos Lipídeos , Lipopolissacarídeos , Pró-Proteína Convertase 9 , Sepse , Sulfonamidas , Animais , Humanos , Masculino , Camundongos , Arginina/análogos & derivados , Arginina/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Fígado/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Ácidos Pipecólicos/farmacologia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Células RAW 264.7 , Sepse/metabolismo , Sulfonamidas/farmacologia
2.
Acta Pharmacol Sin ; 45(5): 879-889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191914

RESUMO

MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.


Assuntos
Epigênese Genética , Humanos , Animais
3.
Structure ; 31(10): 1200-1207.e5, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37527654

RESUMO

ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/química , Metilação , Histona-Lisina N-Metiltransferase/química , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo
4.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504562

RESUMO

Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.

5.
Metabol Open ; 16: 100217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478775

RESUMO

Non-alcoholic fatty liver disease represents the most common liver disease worldwide and the prevailing cause of liver-related morbidity and mortality. It encompasses a broad clinical spectrum ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis, and finally hepatocellular carcinoma. There have been many studies about the underlying mechanisms of NASH progression, fueling a solid therapeutic pipeline across a variety of potential targets to resolve steatohepatitis or fibrosis. Unfortunately, no therapeutic agent has been approved so far for NASH. In an interesting study, Wei et al. highlighted the role of MRG15 as a targetable epigenetic remodeller in the rhythmic regulation of hepatic lipid metabolism. Remarkably, a recent study from the same group uncovered a chromatin-binding independent working mechanism of MRG15 in regulating the progression from early liver steatosis to the advanced NASH stage with fibrosis and inflammation. Collectively, these studies have shown that MRG15 constitutes a key factor during different stages of NAFLD development. Nuclear MRG15 is recruited to promoter regions of liver lipogenesis genes by LRH-1, where it activates the rhythmic expression of lipid synthesis genes, leading to liver steatosis; while in mitochondria, MRG15 accelerates TUFM degradation, resulting in the aggravation of inflammation and fibrosis, and NASH progression. Blocking of MRG15 by CRISPR targeting or by the FDA-approved drug argatroban, which is an antagonist to MRG15, may attenuate liver steatosis. Further studies regarding the functional aspects of MRG15 in different cell types and its regulatory signals will shed light on the intriguing functions of MRG15 in lipid metabolism and tissue fibrogenesis.

6.
J Hepatol ; 77(6): 1491-1503, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985547

RESUMO

BACKGROUND & AIMS: How hepatic steatosis progresses to non-alcoholic steatohepatitis (NASH) is complicated and remains unclear. The mortality factor 4-like protein 1 (MORF4L1, also called MRG15) was previously identified as a master nuclear chromatin remodeler in the rhythmic regulation of lipid synthesis gene expression in the liver. Whether it also contributes to the progression from liver steatosis to NASH is unclear. METHODS: We adopted 2 different murine NASH models, liver biopsies from patients with NASH, and primary mouse and human hepatocyte cultures for functional examination of MRG15 in NASH progression. Immunoprecipitation-mass spectrometry was applied to identify protein partners of MRG15, and CRISPR targeting was used for gene depletion in liver cells in vivo. RESULTS: The MRG15 level is increased in the livers of humans and mice with NASH. The inflammatory cytokines in NASH livers stabilize MRG15 by increasing its acetylation. Considerable amounts of MRG15 associate with the outer mitochondrial membrane, where it interacts with and deacetylates the mitochondrial Tu translation elongation factor (TUFM). Deacetylated TUFM, especially at the K82 and K91 sites, is subjected to accelerated degradation by the mitochondrial ClpXP protease system. Reduced liver TUFM consequently results in impaired mitophagy, increased oxidative stress and activation of the NLRP3 inflammasome pathway. Blocking MRG15 expression protects the liver from NASH progression by increasing the stability of liver TUFM. Liver samples from patients with NASH also display a clear reduction in TUFM level, which correlates with increased MRG15 expression. CONCLUSION: Collectively, these findings uncover a mitochondrial MRG15-TUFM regulatory pathway that contributes significantly to progression from simple steatosis to NASH, and which could potentially be targeted to treat NASH. LAY SUMMARY: The incidence of non-alcoholic fatty liver disease and its progressive form non-alcoholic steatohepatitis (NASH) is increasing, posing a significant global health challenge. Herein, we have uncovered the importance of the MRG15-TUFM pathway in NASH development. This pathway is active in the mitochondria (energy powerhouse of the cell) and could be targeted for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transativadores , Animais , Humanos , Camundongos , Proteínas Cromossômicas não Histona , Mitofagia , Peptídeo Hidrolases , Proteólise
7.
Biotechniques ; 73(1): 5-17, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35698829

RESUMO

Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Sumoilação
8.
SLAS Discov ; 26(1): 77-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32808584

RESUMO

MRG15 is a transcription factor containing the methyl-lysine reader chromodomain. Despite its involvement in different physiological and pathological states, to date the role of this protein has not been fully elucidated due to the lack of a specific and potent chemical probe.In this work, we report the development of a microscale thermophoresis (MST)-based assay for the study of MRG15-ligand binding interactions. After the development, the assay was validated using a small focused library and UNC1215 as the reference compound, to yield the identification of 10 MRG15 ligands with affinities ranging from 37.8 nM to 59.1 µM.Hence, our method is robust, convenient, and fast and could be applied to other methylation reader domain-containing proteins for the identification of new chemical probes.


Assuntos
Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fatores de Transcrição/química , Ligantes , Ligação Proteica , Fatores de Transcrição/antagonistas & inibidores
9.
Structure ; 27(5): 837-845.e3, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827843

RESUMO

The evolutionarily conserved Trithorax group protein Ash1 is a SET domain histone methyltransferase that mono- and dimethylates lysine 36 of histone H3 (H3K36). Ash1 forms a complex with Mrg15 and Nurf55, and the binding of Mrg15 greatly stimulates the catalytic activity of Ash1, yet the underlying molecular mechanisms remain unknown. Here we report the crystal structure of the tandem Mrg15-interacting and SET domains of human Ash1L in complex with Mrg15. Ash1L interacts with Mrg15 principally via a segment located N-terminal to the catalytic SET domain. Surprisingly, an autoinhibitory loop in the post-SET region of Ash1L is destabilized on Mrg15 binding despite no direct contact. Dynamics of the autoinhibitory loop can be attributed to subtle structural changes of the S-adenosylmethionine (SAM) binding pocket induced by Mrg15 binding, implicating a mechanism of conformational coupling between SAM and substrate binding sites. The findings broaden the understanding of regulation of H3K36 methyltransferases.


Assuntos
Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/química , Histonas/química , Fatores de Transcrição/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Metilação , Ligação Proteica
10.
Genetics ; 211(1): 121-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30425042

RESUMO

Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reprogramação Celular , Neurônios/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurogênese , Neurônios/metabolismo , Mapas de Interação de Proteínas , Células-Tronco/metabolismo
11.
Development ; 145(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540501

RESUMO

The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Genes Homeobox/genética , Humanos , Lisina/metabolismo , Espectrometria de Massas , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673974

RESUMO

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Assuntos
Cromatina/ultraestrutura , Dano ao DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Proteína BRCA2/genética , Linhagem Celular Tumoral , Cromossomos/ultraestrutura , Reparo do DNA , Replicação do DNA , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Concentração Inibidora 50 , Mutação , Ligação Proteica , Proteômica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
13.
G3 (Bethesda) ; 5(5): 803-17, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25758823

RESUMO

The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Interfase/genética , Complexos Multiproteicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Expressão Gênica , Genes Reporter , Genoma , Complexos Multiproteicos/química , Mutação , Cromossomos Politênicos , Ligação Proteica , Transporte Proteico , Transcrição Gênica , Ativação Transcricional
14.
RNA Biol ; 12(5): 486-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775193

RESUMO

Recent work including high-resolution genome-wide analysis uncovered a new trimeric complex involved in transcription elongation, both as an integral part of the NuA4 histone acetyltransferase and as an independent functional entity. The complex is conserved in eukaryotes and is named TINTIN, for Trimer Independent of NuA4 for transcription Interactions with Nucleosomes. This point of view covers the current knowledge regarding TINTIN's function in modulating chromatin structure and influencing transcription elongation in eukaryotes. It also points to several physical and functional links to co-transcriptional processes, including interactions with the mRNA splicing machinery and the nuclear exosome.


Assuntos
Cromatina/metabolismo , Processamento Pós-Transcricional do RNA/genética , Elongação da Transcrição Genética , Animais , Humanos , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Transcription ; 5(5): e995571, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25514756

RESUMO

Multiple factors are involved in the elongation stage of transcription regulation to ensure the passing of RNA polymerases while preserving appropriate nucleosome structure thereafter. The recently reported trimeric sub-module of NuA4 histone acetyltransferase complex involved in this process provides more insight into the sophisticated modulation of transcription elongation.


Assuntos
Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Genetics ; 195(1): 127-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821596

RESUMO

Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood. To better understand how Drosophila melanogaster condensin is regulated, we performed a yeast two-hybrid screen and identified the chromo-barrel domain protein Mrg15 to interact with the Cap-H2 condensin subunit. Genetic interactions demonstrate that Mrg15 function is required for Cap-H2-mediated unpairing of polytene chromosomes in ovarian nurse cells and salivary gland cells. In diploid tissues, transvection assays demonstrate that Mrg15 inhibits transvection at Ubx and cooperates with Cap-H2 to antagonize transvection at yellow. In cultured cells, we show that levels of chromatin-bound Cap-H2 protein are partially dependent on Mrg15 and that Cap-H2-mediated homolog unpairing is suppressed by RNA interference depletion of Mrg15. Thus, maintenance of interphase chromosome compaction and homolog pairing status requires both Mrg15 and Cap-H2. We propose a model where the Mrg15 and Cap-H2 protein-protein interaction may serve to recruit Cap-H2 to chromatin and facilitates compaction of interphase chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexos Multiproteicos/metabolismo , Cromossomos Politênicos/metabolismo , Adenosina Trifosfatases/genética , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Interfase , Complexos Multiproteicos/genética , Cromossomos Politênicos/química , Ligação Proteica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...