RESUMO
Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.
Assuntos
Diferenciação Celular , Glicoproteínas de Membrana , Proteínas Quimioatraentes de Monócitos , Osteoclastos , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Proteínas Quimioatraentes de Monócitos/farmacologia , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Regulação para CimaRESUMO
Methylmercury (MeHg) is a well-known neurotoxin of the central nervous system (CNS). Neuroinflammation is one of the main pathways of MeHg-induced CNS impairment. This study aims to investigate the expressions of IL-6, MIP-2, and MCP-5, as biomarkers in relation with MeHg-induced CNS impairment and N-acetyl-L-cysteine (NAC) treatment in mice, as well as histopathological changes of brain tissue and clinical symptom such as ataxia. Twenty male Balb/c mice, aged 8-9 weeks, were divided into 4 groups and treated with saline (control), NAC [150 mg/kg body weight (BW) day], MeHg (4 mg Hg/kg BW), or a combination of MeHg and NAC for 17 days. MeHg induced the expression of IL-6, MIP-2, and MCP-5 in the serum, with median values (those in controls) of 55.06 (9.44), 15.94 (9.30), and 458.91 (239.91) mg/dl, respectively, and a statistical significance was observed only in IL-6 expression (p < 0.05). MIP-2 and MCP-5 expressions tended to increase in the cerebrum of MeHg-treated group compared with controls; however, the difference was not statistically significant. MeHg treatment also increased IL-6 expression in the cerebellum (7.73 and 4.81 mg/dl in MeHg-treated group and controls, respectively), with a marginal significance. NAC significantly suppressed MeHg-induced IL-6 and MIP-2 expressions in the serum (p < 0.05 for both), and slightly reduced MCP-5 expression in the cerebrum. Ataxia was observed in all MeHg-treated mice after 9-day exposure as well as the decrease of intact Purkinje cells in brain tissue (p < 0.05). These findings suggest that MeHg induced neurotoxicity by elevating the expression of IL-6, MIP-2, and MCP-5 and causing ataxia symptoms, and NAC reduced MeHg-mediated effects on the CNS.
Assuntos
Acetilcisteína/uso terapêutico , Quimiocina CXCL2/biossíntese , Compostos de Metilmercúrio/toxicidade , Proteínas Quimioatraentes de Monócitos/biossíntese , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Acetilcisteína/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Quimiocina CXCL2/genética , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quimioatraentes de Monócitos/genética , Distribuição AleatóriaRESUMO
Klebsiella pneumoniae is a primary cause of community-acquired and nosocomial respiratory infections, and K. pneumoniae resistance to the current treatment approach with carbapenem is worsening. Andrographolide is a natural diterpenoid from Andrographis paniculata that was shown to exert anti-inflammatory activity. We herein show that pretreatment with a water-soluble andrographolide sulfonate significantly attenuate lung injury and infiltration of inflammatory cells. Interestingly, mice receiving combined treatment with andrographolide sulfonate displayed perfect survival rate than the mice treatment with imipenem alone, and monocyte chemotactic protein 5 (MCP-5) level was decreased further. These findings suggest that andrographolide sulfonate could as a potential synergist for antibiotic treatment of bacteria-induced inflammation.
Assuntos
Diterpenos/uso terapêutico , Imipenem/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/fisiologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carga Bacteriana , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Diterpenos/farmacologia , Humanos , Imipenem/farmacologia , Inflamação/patologia , Infecções por Klebsiella/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Análise de Sobrevida , Células THP-1RESUMO
Several key processes in the cell, such as vesicle transport and spindle positioning, are mediated by the motor protein cytoplasmic dynein, which produces force on the microtubule. For the functions that require movement of the centrosome and the associated nuclear material, dynein needs to have a stable attachment at the cell cortex. In fission yeast, Mcp5 is the anchor protein of dynein and is required for the oscillations of the horsetail nucleus during meiotic prophase. Although the role of Mcp5 in anchoring dynein to the cortex has been identified, it is unknown how Mcp5 associates with the membrane as well as the importance of the underlying attachment to the nuclear oscillations. Here, we set out to quantify Mcp5 organization and identify the binding partner of Mcp5 at the membrane. We used confocal and total internal reflection fluorescence microscopy to count the number of Mcp5 foci and the number of Mcp5 molecules in an individual focus. Further, we quantified the localization pattern of Mcp5 in fission yeast zygotes and show by perturbation of phosphatidylinositol 4-phosphate 5-kinase that Mcp5 binds to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Remarkably, we discovered that the myosin I protein in fission yeast, Myo1, which is required for organization of sterol-rich domains in the cell membrane, facilitates the localization of Mcp5 and that of cytoplasmic dynein on the membrane. Finally, we demonstrate that Myo1-facilitated association of Mcp5 and dynein to the membrane determines the dynamics of nuclear oscillations and, in essence, dynein activity.