Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23678, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780199

RESUMO

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Assuntos
Aterosclerose , Ferroptose , Melatonina , Fator 2 Relacionado a NF-E2 , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Camundongos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Masculino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Dieta Hiperlipídica/efeitos adversos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Lipoproteínas LDL/metabolismo , Antioxidantes/farmacologia
2.
J Pineal Res ; 76(3): e12954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618998

RESUMO

Osteoporosis (OP) is a severe global health issue that has significant implications for productivity and human lifespan. Gut microbiota dysbiosis has been demonstrated to be closely associated with OP progression. Melatonin (MLT) is an important endogenous hormone that modulates bone metabolism, maintains bone homeostasis, and improves OP progression. Multiple studies indicated that MLT participates in the regulation of intestinal microbiota and gut barrier function. However, the promising effects of gut microbiota-derived MLT in OP remain unclear. Here, we found that OP resulted in intestinal tryptophan disorder and decreased the production of gut microbiota-derived MLT, while administration with MLT could mitigate OP-related clinical symptoms and reverse gut microbiota dysbiosis, including the diversity of intestinal microbiota, the relative abundance of many probiotics such as Allobaculum and Parasutterella, and metabolic function of intestinal flora such as amino acid metabolism, nucleotide metabolism, and energy metabolism. Notably, MLT significantly increased the production of short-chain fatty acids and decreased trimethylamine N-oxide-related metabolites. Importantly, MLT could modulate the dynamic balance of M1/M2 macrophages, reduce the serum levels of pro-inflammatory cytokines, and restore gut-barrier function. Taken together, our results highlighted the important roles of gut microbially derived MLT in OP progression via the "gut-bone" axis associated with SCFA metabolism, which may provide novel insight into the development of MLT as a promising drug for treating OP.


Assuntos
Melatonina , Humanos , Melatonina/farmacologia , Triptofano , Disbiose/tratamento farmacológico , Metilaminas
3.
Life Sci ; 342: 122513, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387700

RESUMO

BACKGROUND: The epidermic microbiota plays crucial roles in the pathogenesis of atopic dermatitis (AD), a common inflammatory skin disease. Melatonin (MLT) has been shown to ameliorate skin damage in AD patients, yet the underlying mechanism is unclear. METHODS: Using 2,4-dinitrofluorobenzene (DNFB) to induce an AD model, MLT intervention was applied for 14 days to observe its pharmaceutical effect. Skin lesions were observed using HE staining, toluidine blue staining and electron microscopy. Dermal proinflammatory factor (IL-4 and IL-13) and intestinal barrier indices (ZO1 and Occludin) were assessed by immunohistochemistry and RT-qPCR, respectively. The dysbiotic microbiota was analyzed using 16S rRNA sequencing. RESULTS: MLT significantly improved skin lesion size; inflammatory status (mast cells, IgE, IL-4, and IL-13); and the imbalance of the epidermal microbiota in AD mice. Notably, Staphylococcus aureus is the key bacterium associated with dysbiosis of the epidermal microbiota and may be involved in the fine modulation of mast cells, IL-4, IL-13 and IgE. Correlation analysis between AD and the gut revealed that intestinal dysbiosis occurred earlier than that of the pathological structure in the gut. CONCLUSION: Melatonin reverses DNFB-induced skin damage and epidermal dysbiosis, especially in S. aureus.


Assuntos
Dermatite Atópica , Melatonina , Microbiota , Dermatopatias , Humanos , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitrofluorbenzeno/toxicidade , Melatonina/farmacologia , Interleucina-13 , Staphylococcus aureus , Interleucina-4/farmacologia , RNA Ribossômico 16S/genética , Disbiose/patologia , Pele , Dermatopatias/patologia , Imunoglobulina E
4.
Mol Cell Endocrinol ; 568-569: 111917, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028587

RESUMO

Melatonin (MLT) is a hormone with potential anti-tumor properties, but the molecular mechanisms remain unclear. The present study aimed to explore the effect of MLT on exosomes derived from gastric cancer cells, with the goal of gaining insight into its anti-tumor activity. Results from in vitro experiments showed that MLT was able to enhance the anti-tumor activity of macrophages that had been suppressed by exosomes from gastric cancer cells. This effect was achieved through regulation of the levels of PD-L1 in macrophages via modulation of the associated microRNAs in the cancer-derived exosomes. Furthermore, MLT treatment increased the secretion of TNF-α and CXCL10 by the macrophages. Besides, MLT treatment of gastric cancer cells led to the production of exosomes that promoted the recruitment of CD8+ T cells to the tumor site, resulting in inhibition of tumor growth. Collectively, these results provide evidence for the modulation of the tumor immune microenvironment by MLT through regulation of exosomes derived from gastric cancer cells, suggesting a potential role for MLT in novel anti-tumor immunotherapies.


Assuntos
Exossomos , Melatonina , Neoplasias Gástricas , Humanos , Melatonina/farmacologia , Exossomos/patologia , Antígeno B7-H1/farmacologia , Linfócitos T CD8-Positivos/patologia , Macrófagos , Microambiente Tumoral
5.
Enzyme Microb Technol ; 161: 110115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030697

RESUMO

Microalgae are considered to be a very promising class of raw material for carotenoid production. In this study, melatonin (MLT), a widely used plant growth regulator, was added to the autotrophic medium of Dunaliella bardawil to explore its effects on the growth and pigment accumulation of Dunaliella bardawil. The results showed that the induction of exogenous MLT alone was not beneficial to the growth and pigment accumulation of Dunaliella bardawil, and the higher the concentration, the more obvious the inhibitory effect on the algal cells. Therefore, a strategy to promote carotenoid accumulation in Dunaliella bardawil by combining exogenous MLT and light induction was carried out. Under 4500 LUX light intensity, the content of zeaxanthin was significantly increased under exogenous MLT induction. In the 200 µg/mL, 300 µg/mL, and 400 µg/mL MLT-treated groups, the zeaxanthin single-cell content in the 300 µg/mL-treated group was as high as 0.38 ng/mL (0.17 ng/mL in the control group), which was 1.24-fold higher compared to the control. Under 9500 LUX light intensity, all carotenoids showed an increasing trend in all experimental groups, except for zeaxanthin, which showed a decreasing trend. The effect of 300 µg/mL showed the most obvious in the 200 µg/mL,300 µg/mL, and 400 µg/mL MLT treatment groups, where the lutein, α-carotene and ß-carotene contents were 1.24, 1.14 and 1.31 times higher than those of the control group, respectively. Overall, exogenous MLT at high light intensities had a significant effect on pigment accumulation in Dunaliella bardawil.


Assuntos
Clorofíceas , Melatonina , Carotenoides , Zeaxantinas , beta Caroteno
6.
Front Biosci (Landmark Ed) ; 27(7): 223, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35866405

RESUMO

Breast cancer is the most common malignancy among women worldwide. Several studies indicate that, in addition to established risk factors for breast cancer, other factors such as cortisol release related to psychological stress and drug treatment with high levels of glucocorticoids may also contribute significantly to the initiation of breast cancer. There are several possible mechanisms by which glucocorticoids might promote neoplastic transformation of breast tissue. Among these, the least known and studied is the inhibition of the nuclear erythroid factor 2-related (Nrf2)-antioxidant/electrophile response element (ARE/EpRE) pathway by high levels of glucocorticoids. Specifically, Nrf2 is a potent transcriptional activator that plays a central role in the basal and inducible expression of many cytoprotective genes that effectively protect mammalian cells from various forms of stress and reduce the propensity of tissues and organisms to develop disease or malignancy including breast cancer. Consequently, a loss of Nrf2 in response to high levels of gluco-corticoids may lead to a decrease in cellular defense against oxidative stress, which plays an important role in the initiation of human mammary carcinogenesis. In the present review, we provide a comprehensive overview of the current state of knowledge of the cellular mechanisms by which both glucocorticoid pharmacotherapy and endogenous GCs (cortisol in humans and corticosterone in rodents) may contribute to breast cancer development through inhibition of the Nrf2-ARE/EpRE pathway and the protective role of melatonin against glucocorticoid-induced apoptosis in the immune system.


Assuntos
Neoplasias da Mama , Carcinogênese , Glucocorticoides , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Neoplasias da Mama/induzido quimicamente , Carcinogênese/induzido quimicamente , Feminino , Glucocorticoides/efeitos adversos , Humanos , Hidrocortisona , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
7.
Eur J Pharmacol ; 897: 173919, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577837

RESUMO

Colorectal cancer (CRC) mortality has diminished for decades due to new and improved treatment profiles. However, CRC still ranks as the third most diagnosed cancer in the US. Therefore, a new therapeutic approach is needed to overcome colospheroids inhibition and drug resistance. It is well documented that andrographolide (AGP) and melatonin (MLT) have anti-carcinogenic properties. Our goal was to evaluate their synergistic effects on metastatic colon cancer cells (mCRC) and colospheroids. HT-29 and HCT-15 mCRC cells were simultaneously treated with serial dilutions of AGP and MLT for 24, 48 and 72 h. Cell viability was monitored using the MTT assay. The Chou-Talalay method for drug combination is based on the median effect equation, providing a theoretical basis for the combination index and the isobologram equation. This allows quantitative determination of drug interactions using the CompuSyn software, where CI < 1, = 1, and >1 indicates synergistic, additive, and antagonistic effects respectively. Our results demonstrate that AGP and MLT in combination show synergism with CI values of 0.35293 and 0.34152 for HT-29 and HCT-15 respectively and a fractional inhibition of Fa = 0.50-0.90, as shown by the Fa-CI plot and isobologram. The synergism value was validated in colospheroids (HT-29-s and HCT-15-s) based on morphology, viability, and colony formation and in 5-FU drug resistant cell (HT-29R and HCT-116R) viability. The mechanism(s) of decreased cell viability are due to the induction of ER stress proteins and angiogenic inhibition. Our results provide rationale for using AGP in combination with MLT on mCRC.


Assuntos
Inibidores da Angiogênese/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Diterpenos/farmacologia , Melatonina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares
8.
Fish Physiol Biochem ; 46(6): 2265-2280, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32978696

RESUMO

The present study aimed to investigate the effect of dietary of melatonin (MLT) and folic acid (FA) administrations on growth performance, antioxidant status, and liver histological structure of juvenile gilthead sea bream, Sparus aurata L. under standard rearing conditions. Four diets were considered: a basal diet considered a control and three diets supplemented with 40 mg/kg of melatonin (MLT), 2 mg/kg of folic acid (FA), and with the mixture of melatonin and folic acid (MLT + FA). Each diet was randomly allocated to triplicate groups of fish (mean initial weight was 2.99 ± 0.55 g) for 41 days. The obtained results clearly indicated that the melatonin-supplemented diet decreased significantly the growth performance parameters (final body weight, weight gain rate, and specific growth rate) and IGF-1 level of the gilthead sea bream, while the folic acid-supplemented diet has no significant effect on these parameters. The mixture supplementation of melatonin and folic acid has no significant effect on the growth parameters due to the possible interaction between melatonin and folic acid effects. Furthermore, fish fed with all experimental diets showed significantly higher superoxide dismutase activity (SOD) and protein sulfhydryl level (PSH) and lower lipid peroxidation level (TBARS) and catalase activity (CAT) which confirm their powerful antioxidant role. The acetylcholinesterase activity (ACHE) decreased in fish fed with all experimental diets. The underlying mechanisms of driving melatonin and folic acid to reduce acetylcholinesterase activity require further studies. The histological structure of liver of control S. aurata fish shows severe hepatic lipid accumulation in large vacuoles that diminished after dietary individual or mixture folic acid and melatonin supplementations over 41 days. This work proved that 2 mg/kg of dietary folic acid has a positive effect on the growth performance, oxidative stress defense, and hepatic lipid accumulation reduction in the gilthead sea bream fish. Under our experimental conditions, melatonin failed to improve the growth indexes WGR, SGR, and IGF-I. This study recommends the diet supplementation with a dose lower than 2 mg/kg of food due to the observed effects on tissue ACHE activity.


Assuntos
Suplementos Nutricionais , Ácido Fólico/farmacologia , Melatonina/farmacologia , Dourada/crescimento & desenvolvimento , Dourada/metabolismo , Acetilcolinesterase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Catalase/metabolismo , Proteínas de Peixes/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
9.
Mol Cell Biochem ; 453(1-2): 111-119, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30178274

RESUMO

Melatonin is a crucial neurohormone synthesized in the pineal gland that influences the physiology of animals. The molecular mechanism of norepinephrine control of the synthesis of melatonin is well documented; however, few reports have described the effects of epinephrine on the synthesis of melatonin. In this study, the effect of epinephrine on melatonin synthesis was investigated by adding different concentrations of epinephrine or norepinephrine to broiler pineal glands cultured in vitro. In addition, we investigated how epinephrine regulates the synthesis of melatonin and the transcription of the key melatonin synthesis enzyme AANAT. We determined the abundance of melatonin, norepinephrine, and epinephrine in broiler serum and the mRNA expression levels of key enzymes under different light conditions. The minimum concentrations of epinephrine and norepinephrine required to recover the melatonin synthesis rhythm in pineal cells were 10-13 and 10-11 mol/L, respectively. Under various light durations, epinephrine reached maximum levels two hours earlier than melatonin. These results demonstrate for the first time that epinephrine can increase the synthesis of melatonin by increasing the transcription of AANAT.


Assuntos
Arilalquilamina N-Acetiltransferase/biossíntese , Proteínas Aviárias/biossíntese , Galinhas/metabolismo , Epinefrina/farmacologia , Melatonina/biossíntese , Glândula Pineal/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Arilalquilamina N-Acetiltransferase/genética , Proteínas Aviárias/genética , Galinhas/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Melatonina/genética
10.
Oncotarget ; 6(19): 16866-82, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26220712

RESUMO

Breast cancer is already the most common malignancy affecting women worldwide, and evidence is mounting that breast cancer induced by circadian disruption (CD) is a warranted concern. Numerous studies have investigated various aspects of the circadian clock in relation to breast cancer, and evidence from these studies indicates that melatonin and the core clock genes can play a crucial role in breast cancer development. Even though epigenetics has been increasingly recognized as a key player in the etiology of breast cancer and linked to circadian rhythms, and there is evidence of overlap between epigenetic deregulation and breast cancer induced by circadian disruption, only a handful of studies have directly investigated the role of epigenetics in CD-induced breast cancer. This review explores the circadian clock and breast cancer, and the growing role of epigenetics in breast cancer development and circadian rhythms. We also summarize the current knowledge and next steps for the investigation of the epigenetic link in CD-induced breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Epigênese Genética/genética , Animais , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...