Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.110
Filtrar
1.
Biomaterials ; 312: 122740, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096839

RESUMO

Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.


Assuntos
Asparaginase , Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Asparaginase/uso terapêutico , Asparaginase/farmacologia , Asparaginase/química , Imunoterapia/métodos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Humanos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Elastina/química , Elastina/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Distribuição Tecidual
2.
Gene ; 932: 148900, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209180

RESUMO

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Paclitaxel , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , Paclitaxel/farmacologia , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , RNA Interferente Pequeno/genética
3.
Carbohydr Polym ; 344: 122466, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218533

RESUMO

Traditional fungi ß-glucan commonly possesses high molecular weight with poor water solubility, which remains significant challenge in the drug development and medical application. Water-soluble ß-glucan with high molecular weight (dHSCG) of 560 kDa, low molecular weight (dLSCG) of 60 kDa, and sulfated derivative (SCGS) with a molecular weight of 146 kDa and sulfate degree at 2.04 were obtained through well-controlled degradation and sulfated modification from Saccharomyces cerevisiae in this study. The structural characteristics were confirmed as ß-1,3/6-glucan by FT-IR and NMR spectroscopy. Carbohydrate microarrays and surface plasmon resonance revealed distinct and contrasting binding affinities between the natural ß-glucans and sulfated derivatives. SCGS exhibited strong binding to FGF and VEGF, while natural ß-glucan showed no response, suggesting its potential as a novel antitumor agent. Moreover, SCGS significantly inhibited the migration rate of the highly metastatic melanoma (B16F10) cells. The lung metastasis mouse model also demonstrated that SCGS significantly reduced and eliminated the nodules, achieving an inhibition rate of 86.7% in vivo, with a dramatic improvement in IFN-α, TNF-α, and IL-1ß levels. Through analysis of protein content and distribution in lung tissues, the anti-tumor and anti-metastasis mechanism of SCGS involves the regulation of degrading enzymes to protect extracellular matrix (ECM), as well as the reduction of angiogenic factor release. These findings provide a foundation for exploring the potential of SCGS in the development of new anti-tumor and anti-metastasis drugs and open up a new field in cancer research.


Assuntos
Antineoplásicos , Saccharomyces cerevisiae , Solubilidade , beta-Glucanas , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , beta-Glucanas/química , beta-Glucanas/farmacologia , Água/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Sulfatos/química , Movimento Celular/efeitos dos fármacos , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-39218714

RESUMO

Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed. We have compiled a cohort of 850 patients, which has shown a 3.65 % fusion prevalence and represents the largest MAML3-positive series reported to date. While MAML3-fusions mainly cause single pheochromocytomas, we also observed somatic post-zygotic events, resulting in multiple tumours in the same patient. MAML3-tumours show increased expression of neuroendocrine-to-mesenchymal transition markers, MYC-targets, and angiogenesis-related genes, leading to a distinct tumour microenvironment with unique vascular and immune profiles. Importantly, our findings have identified MAML3-tumours specific vulnerabilities beyond Wnt-pathway dysregulation, such as a rich vascular network, and overexpression of PD-L1 and CD40, suggesting potential therapeutic targets.

5.
Acta Radiol ; : 2841851241268463, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39219479

RESUMO

BACKGROUND: The status of axillary lymph nodes (ALN) plays a critical role in the management of patients with breast cancer. It is an urgent demand to develop highly accurate, non-invasive methods for predicting ALN status. PURPOSE: To evaluate the efficacy of ultrasound radiofrequency (URF) time-series parameters, in combination with clinical data, in predicting ALN metastasis in patients with breast cancer. MATERIAL AND METHODS: We prospectively gathered clinicopathologic and ultrasonic data from patients diagnosed with breast cancer. Various machine-learning (ML) models were developed using all available features to determine the most efficient diagnostic model. Subsequently, distinct prediction models were created using the optimal ML model, and their diagnostic performances were evaluated and compared. RESULTS: The study encompassed 240 patients, of whom 88 had lymph node metastases. A leave-one-out cross-validation (LOOCV) method was used to split the entire dataset into training and testing subsets. The random forest ML model outperformed the other algorithms, with an area under the curve (AUC) of 0.92. Prediction models based on clinical, ultrasonic, URF parameters, clinical + ultrasonic, clinical + URF, and ultrasonic + URF parameters had AUCs of 0.56, 0.79, 0.78, 0.90, 0.80, and 0.84, respectively, in the testing set. The comprehensive diagnostic model (clinical + ultrasonic + URF parameters) demonstrated strong diagnostic capability, with an AUC of 0.94 in the testing set, exceeding any single prediction model. CONCLUSION: The combined model (clinical + ultrasonic + URF parameters) could be used preoperatively to predict lymph node status, offering valuable input for the design of individualized surgical approaches.

6.
Cancer Commun (Lond) ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221971

RESUMO

BACKGROUND: Tumor metastasis is a major threat to cancer patient survival. The organ-specific niche plays a pivotal role in tumor organotropic metastasis. Fibroblasts serve as a vital component of the metastatic microenvironment, but how heterogeneous metastasis-associated fibroblasts (MAFs) promote organotropic metastasis is poorly characterized. Here, we aimed to decipher the heterogeneity of MAFs and elucidate the distinct roles of these fibroblasts in pulmonary metastasis formation in breast cancer. METHODS: Mouse models of breast cancer pulmonary metastasis were established using an in vivo selection method of repeated injections of metastatic cells purified from the mouse lung. Single-cell RNA-sequencing (scRNA-seq) was employed to investigate the heterogeneity of MAFs. Transgenic mice were used to examine the contribution of tryptophan 2,3-dioxygenase-positive matrix fibroblasts (TDO2+ MFs) in lung metastasis. RESULTS: We uncovered 3 subtypes of MAFs in the lung metastatic microenvironment, and their transcriptome profiles changed dynamically as lung metastasis evolved. As the predominant subtype, MFs were exclusively marked by platelet-derived growth factor receptor alpha (PDGFRA) and mainly located on the edge of the metastasis, and T cells were enriched around MFs. Notably, high MF signatures were significantly associated with poor survival in breast cancer patients. Lung metastases were markedly diminished, and the suppression of T cells was dramatically attenuated in MF-depleted experimental metastatic mouse models. We found that TDO2+ MFs controlled pulmonary metastasis by producing kynurenine (KYN), which upregulated ferritin heavy chain 1 (FTH1) level in disseminated tumor cells (DTCs), enabling DTCs to resist ferroptosis. Moreover, TDO2+ MF-secreted chemokines C-C motif chemokine ligand 8 (CCL8) and C-C motif chemokine ligand 11 (CCL11) recruited T cells. TDO2+ MF-derived KYN induced T cell dysfunction. Conditional knockout of Tdo2 in MFs diminished lung metastasis and enhanced immune activation. CONCLUSIONS: Our study reveals crucial roles of TDO2+ MFs in promoting lung metastasis and DTCs' immune evasion in the metastatic niche. It suggests that targeting the metabolism of lung-specific stromal cells may be an effective treatment strategy for breast cancer patients with lung metastasis.

7.
Clin Exp Metastasis ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222238

RESUMO

Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.

8.
Angiogenesis ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222273

RESUMO

The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.

9.
J Thorac Oncol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260521

RESUMO

INTRODUCTION: Leptomeningeal metastasis (LM) is one of the most severe complications of non-small cell lung cancer (NSCLC). Furmonertinib is a pan-epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with a high rate of brain penetration and a wide therapeutic window. Here, we evaluated the efficacy and safety of high-dose furmonertinib in patients with EGFR-mutated NSCLC and LM. METHODS: This prospective real-world study included patients with EGFR-mutated NSCLC and LM treated with a high-dose furmonertinib (240 mg once daily) as a monotherapy or in combination with other treatments. The primary endpoint was overall survival (OS), and the secondary endpoints included time to treatment discontinuation (TTD) and clinical response rate. Additional efficacy evaluations included changes in brain magnetic resonance imaging (MRI) by the RANO-LM radiologic criteria. We also introduced next generation sequencing (NGS)-based assays to evaluate genomic and epigenomic features of cell-free DNA (cfDNA) in patients' cerebrospinal fluid (CSF) samples and to analyze their associations with patient outcomes. RESULTS: We enrolled 48 patients, of whom 35 (72.9%) had received third-generation EGFR-TKIs. The median OS was 8.43 months (95%CI, 5.48 to 11.39 months), while the median TTD was 8.27 months (95%CI, 5.40 to 11.14 months), and the clinical response rate was 75%. The LM objective response rate (ORR) and disease control rate (DCR) assessed with RANO-LM radiologic criteria were 50.0% and 92.1%, respectively. The adverse event profiles were consistent with previous reports of furmonertinib. Briefly, 22 (45.8%) had adverse events (AEs) possibly related to furmonertinib and three (6.3%) had a grade 3-elevated aminotransaminase or nausea or leucopenia, leading to dose reduction to 160 mg daily. Furthermore, methylation analysis of cfDNA in CSF showed that there was a significant correlation between the changes of aberrant methylated fragments (AMFs) from lung cancer cells and the response of the patients. Meanwhile, the copy number burden (CNB) scores derived from the low-pass whole genome sequencing (LP-WGS) assay may offer another objective and effective method for the diagnosis and evaluation of treatment efficacy in LM. CONCLUSION: In the real world, the high-dose furmonertinib-based treatment may potentially have clinical efficacy and tolerable safety in patients of EGFR-mutated NSCLC with LM, even in patients previously treated with other third-generation EGFR-TKIs. Methylation and CNB analysis of cfDNA in CSF may be considered objective indicators for the diagnosis of LM and evaluation of treatment response.

10.
Int Rev Cell Mol Biol ; 388: 124-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39260935

RESUMO

Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.


Assuntos
Neoplasias da Mama , Progressão da Doença , Metástase Neoplásica , Receptores de Quimiocinas , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Ligantes , Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/metabolismo
11.
Curr Mol Pharmacol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39225205

RESUMO

The main cause of cancer-related fatalities is cancer metastasis to other body parts, and increased glycolysis is crucial for cancer cells to maintain their elevated levels of growth and energy requirements, ultimately facilitating the invasion and spread of tumors. The Warburg effect plays a significant role in the advancement of cancer, and focusing on the suppression of aerobic glycolysis could offer a promising strategy for anti-cancer treatment. Various glycolysis processes are associated with tumor metastasis, primarily involving non-coding RNA (ncRNAs), signaling pathways, transcription factors, and more. Various categories of noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have shown promise in influencing glucose metabolism associated with the spread of tumors. Additionally, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) predominantly act as competitive endogenous RNAs (ceRNAs) by sequestering microRNAs, thereby modulating the expression of target genes and exerting significant influence on the metabolic processes of cancerous cells. Furthermore, the process of tumor metastasis through glycolysis also encompasses various signaling pathways (such as PI3K/AKT, HIF, Wnt/ß- Catenin, and ERK, among others) and transcription factors. This article delineates the primary mechanisms through which non-coding RNAs, signaling pathways, and transcription factors contribute to glycolysis in tumor metastasis. It also investigates the potential use of these factors as prognostic markers and targets for cancer treatment. The manuscript also explores the innovative applications of specific traditional Chinese medicine and clinical Western medications in inhibiting tumor spread through glycolysis mechanisms, offering potential as new candidates for anti-cancer drugs.

12.
Adv Mater ; : e2409618, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225412

RESUMO

Addressing the inefficiency of current therapeutic approaches for hepatocellular carcinoma is an urgent and pressing challenge. PANoptosis, a form of inflammatory programmed cell death, presents a dependable strategy for combating cancer by engaging multiple cell death pathways (apoptosis, pyroptosis, and necroptosis). In this study, an ultrasmall Bi2Sn2O7 nanozyme with ultrasound-magnified multienzyme-mimicking properties is designed and engineered as a PANoptosis inducer through destroying the mitochondrial function of tumor cells and enhancing the intracellular accumulation of toxic reactive oxygen species, finally triggering the activation of PANoptosis process. The role of PANoptosis inducer has been verified by the expression of related proteins, including cleaved Caspase 3, NLRP3, N-GSDMD, cleaved Caspase 1, p-MLKL, and RIPK3. The inclusion of external ultrasonic irradiation significantly augments the enzyodynamic therapeutic efficiency. In vitro and in vivo antineoplastic efficacy, along with inhibition of lung metastasis, validate the benefits of the Bi2Sn2O7-mediated PANoptosis pathway. This study not only elucidates the intricate mechanisms underlying Bi2Sn2O7 as a PANoptosis inducer, but also offers a novel perspective for the treatment of hepatocellular carcinoma.

13.
Adv Sci (Weinh) ; : e2404904, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225541

RESUMO

Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-ß (TGF-ß) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified. This study first establishes the interactome of Smad3 in breast cancer cells and identifies ZNF8 as a novel Smad3 cofactor. Furthermore, the results reveal that ZNF8 is closely associated with breast cancer lung metastasis prognosis, and specifically facilitates TGF-ß pathway-mediated breast cancer lung metastasis by participating in multiple processes. Mechanistically, ZNF8 binds with Smad3 to enhance the H3K4me3 modification and promote the expression of lung metastasis signature genes by recruiting SMYD3. SMYD3 inhibition by BCI121 effectively prevents ZNF8-mediated lung metastasis. Overall, the study identifies a novel cofactor of TGF-ß/Smad3 that promotes lung metastasis in breast cancer and introduces potential therapeutic strategies for the early management of breast cancer lung metastasis.

14.
Med Phys ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225550

RESUMO

BACKGROUND: Deep learning is the primary method for conducting automated analysis of SPECT bone scintigrams. The lack of available large-scale data significantly hinders the development of well-performing deep learning models, as the performance of a deep learning model is positively correlated with the size of the dataset used. Therefore, there is an urgent demand for an automated data generation method to enlarge the dataset of SPECT bone scintigrams. PURPOSE: We introduce a deep learning-based generation model that can generate realistic but not identical samples from the original SPECT bone scintigrams. METHODS: Following the generative adversarial learning architecture, a bone metastasis scintigram generation model christened BMS-Gen is proposed. First, BMS-Gen takes multiple input conditions and employs multi-receptive field learning to ensure that the generated samples are as realistic as possible. Second, BMS-Gen adopts generative adversarial learning to retain the diversity of the generated samples. Last, BMS-Gen uses a two-stage training strategy to improve the quality of the generated samples. RESULTS: Experimental evaluation conducted on a set of clinical data of SPECT BM scintigrams has shown the performance of the proposed BMS-Gen, achieving the best overall scores of 1678.0, 69.33, and 19.51 for FID (Fréchet Inception Distance), MSE (Mean Square Error), and PSNR (Peak Signal-to-Noise Ratio) metrics. The introduction of samples generated by BMS-Gen contributes a maximum (minimum) increase of 3.01% (0.15%) on the F-1 score and a maximum (minimum) increase of 6.83% (2.21%) on the DSC score for the image classification and segmentation tasks, respectively. CONCLUSIONS: The proposed BMS-Gen model can be used as a promising tool for augmenting the data of bone scintigrams, greatly facilitating the development of deep learning-based automated analysis of SPECT bone scintigrams.

15.
Adv Sci (Weinh) ; : e2407069, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225567

RESUMO

Lipid metabolism reprogramming stands as a fundamental hallmark of cancer cells. Unraveling the core regulators of lipid biosynthesis holds the potential to find promising therapeutic targets in pancreatic ductal adenocarcinoma (PDAC). Here, it is demonstrated that platelet-derived growth factor C (PDGFC) orchestrated lipid metabolism, thereby facilitated the malignant progression of PDAC. Expression of PDGFC is upregulated in PDAC cohorts and is corelated with a poor prognosis. Aberrantly high expression of PDGFC promoted proliferation and metastasis of PDAC both in vitro and in vivo. Mechanistically, PDGFC accelerated the malignant progression of PDAC by upregulating fatty acid accumulation through sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in lipid metabolism. Remarkably, Betulin, an inhibitor of SREBP1, demonstrated the capability to inhibit proliferation and metastasis of PDAC cell lines, along with attenuating the process of liver metastasis in vivo. Overall, the study underscores the pivotal role of PDGFC-mediated lipid metabolism in PDAC progression, suggesting PDGFC as a potential biomarker for PDAC metastasis. Targeting PDGFC-induced lipid metabolism emerges as a promising therapeutic strategy for metastatic PDAC, with the potential to improve clinical outcomes.

16.
J Gastrointest Surg ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241945

RESUMO

BACKGROUND: Dysphagia caused by tumor strictures is a major symptom in patients with advanced esophageal cancer. However, the prognostic impact of dysphagia in resectable cases is insufficiently investigated. This study investigated the prognostic value of dysphagia scores in resectable advanced esophageal cancer who underwent radical esophagectomy after preoperative treatment. METHODS: This retrospective study enrolled 302 consecutive patients with advanced resectable esophageal cancer who received preoperative treatment. The preoperative dysphagia score was used to assess the relationship between tumor stricture and clinical outcomes. RESULTS: Almost half of the patients had dysphagia scores of 2-4 (n=152, 50.3%). A lower body mass index (BMI), circumferential tumors, and non-curative resection were significantly more as dysphagia scores worsened. Patients with dysphagia had significantly more advanced ypT stage and worse histopathological response than those without dysphagia. The 5-year disease-free survival rates for dysphagia scores 0-1, 2-3, and 4 were 52.9%, 35.3%, and 26.7% and for overall survival were 60.7%, 40.4%, and 26.7%, respectively. Multivariate analysis identified dysphagia score as an independent factor of overall survival, similar to surgical curability and ypN stage. The postoperative recurrence rate was significantly higher among patients with dysphagia scores of 2-3 (56%) and those of 4 (67%), compared to those with 0-1 (36%) (P<0.001 and 0.037, respectively). Furthermore, distant recurrence in dysphagia scores of 2-3 and 4 was higher than in 0-1 (26%, 46%, and 42%, respectively). CONCLUSION: Dysphagia score before initial treatment is associated with postoperative survival in patients with resectable advanced esophageal cancer.

17.
Clin J Gastroenterol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242478

RESUMO

Renal leiomyosarcoma metastasis to the pancreas is exceptionally rare. Here, we present a case of metastatic recurrence in the pancreas seven years after renal leiomyosarcoma resection. A 73-year-old female with a history of renal leiomyosarcoma surgery seven years prior presented with a well-defined 40 × 30 mm pancreatic tail tumor detected by a computed tomography (CT) scan. The tumor exhibited hypo-enhancement in the arterial phase and a progressive enhancement pattern toward the equilibrium phase, similar to pancreatic cancer. Endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) revealed bundles of spindle cells that matched those in the previously resected renal sample. Immunohistochemistry showed positive staining for desmin, confirming the diagnosis of pancreatic metastasis from renal leiomyosarcoma. The patient underwent a distal pancreatectomy to remove the metastatic lesion. The extended interval of seven years before the detection of metastasis underscores the challenges in monitoring and diagnosing metastatic patterns of renal leiomyosarcoma. EUS-FNB can assist in distinguishing metastatic pancreatic leiomyosarcoma from primary pancreatic cancer, thus influencing treatment decisions.

18.
Colloids Surf B Biointerfaces ; 245: 114187, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39243709

RESUMO

Among the tumors with the highest lethality, gliomas are primary brain tumors associated with common recurrence inclined to metastasize along the neuraxis and occasionally out of the central nervous system. Even though metastasis is the main responsible for death in oncological patients, few dedicated treatments are approved. Therefore, the establishment of effective anti-metastasis agents is the final frontier in cancer research. Interestingly, some copper complexes have demonstrated promising efficacy as antimetastatic agents, but they may cause off-site effects such as the alteration of copper homeostasis in healthy tissues. Thus, the incorporation of copper-based antimetastatic agents in rationally designed nano-architectures can increase the treatment localization reducing the side effects. Here, copper complex loaded hybrid nano-architectures (CuLNAs) are presented and employed to assess the impact of an intracellular copper source on glioma cell invasiveness. The novel CuLNAs are fully characterized and exploited for cell migration modulation in a glioma cell line. The results demonstrate that CuLNAs significantly reduce cell migration without impairing cell proliferation compared to standard gold and copper NAs. A concomitant antimigratory-like regulation of the epithelial-to-mesenchymal transition genes confirmed these results, as the gene encoding for the epithelial protein E-cadherin was upregulated and the other explored mesenchymal genes were downregulated. These findings, together with the intrinsic behaviors of NAs, demonstrate that the inclusion of metal complexes in the nano-architectures is a promising approach for the composition of a family of agents with antimetastatic activity.

19.
Cell ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39243762

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

20.
Cell ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39243764

RESUMO

There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...