Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.695
Filtrar
1.
Biosensors (Basel) ; 14(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39194632

RESUMO

The convenient and sensitive detection of metabolites is of great significance for understanding human health status and drug development. Solid-phase electrochemiluminescence (ECL) enzyme electrodes show great potential in metabolite detection based on the enzyme-catalyzed reaction product hydrogen peroxide (H2O2). Herein, a solid-phase ECL enzyme sensor was fabricated based on a confined emitter and an immobilized enzyme using electrostatic nanocage array, constructing a platform for the sensitive detection of cholesterol. The electrostatic cage nanochannel consists of a bipolar and bilayer vertically aligned mesoporous silica film (bp-VMSF). The upper layer of bp-VMSF is an amino-modified, positively charged VMSF (p-VMSF), and the lower layer is a negatively charged VMSF (n-VMSF). The most commonly used ECL probe tris(bipyridine)ruthenium(II) (Ru(bpy)32+) is fixed in n-VMSF by electrostatic adsorption from n-VMSF and electrostatic repulsion from the upper p-VMSF, generating significantly enhanced and stable ECL signals. The successful preparation of the electrostatic cage was characterized by scanning electron microscopy (SEM) and electrochemical methods. After amino groups on the outer surface of bp-VMSF were derivatized with aldehyde, cholesterol oxidase (ChOx) molecules were covalently immobilized. The successful construction of the enzyme electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). When the corresponding enzyme substrate, cholesterol, was present in the solution, the ECL signal of Ru(bpy)32+ was quenched by the enzyme-catalyzed reaction product H2O2, enabling the high-sensitivity detection of cholesterol. The linear range for detecting cholesterol was from 0.05 mM to 5.0 mM, with a limit of detection (LOD) of 1.5 µM.


Assuntos
Técnicas Biossensoriais , Colesterol , Técnicas Eletroquímicas , Eletrodos , Colesterol/análise , Enzimas Imobilizadas/química , Medições Luminescentes , Peróxido de Hidrogênio/análise , Humanos , Dióxido de Silício/química , Colesterol Oxidase
2.
Metabolites ; 14(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39195501

RESUMO

Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.

3.
Metabolites ; 14(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39195510

RESUMO

The environment is an important factor affecting the composition and abundance of metabolites in O. sinensis, which indirectly determines its edible function and medicinal potential. This study integrated metabolomics and redundancy analysis (RDA) to analyze the metabolite profile characteristics and key environmental factors influencing O. sinensis in various production areas. A total of 700 differentially accumulated metabolites (DAMs) were identified, primarily comprising lipids, organic acids, and organoheterocyclic compounds. Results from hierarchical cluster analysis and KEGG indicated distinct accumulation patterns of these DAMs in O. sinensis from different regions, with enrichment in pathways such as tryptophan metabolism and glycerophospholipid metabolism. Environmental factors like annual mean precipitation, pH, temperature, and altitude were found to significantly influence metabolite composition, particularly lipids, organic acids, and nucleosides. Overall, this study highlights the impact of environmental factors on metabolite diversity in O. sinensis and sheds light on the evolutionary processes shaping its metabolic landscape.

4.
Metabolites ; 14(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39195559

RESUMO

Metabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = 758 controls with available specimens (collected mean 7.2 years prior to diagnosis) in the Women's Health Initiative Bone Mineral Density subcohort. Fasting samples were analyzed by LC-MS/MS and lipidomics in serum, plus GC-MS and NMR in 24 h urine. For feature selection, we applied LASSO regression and Super Learner algorithms. Prediction models were subsequently derived using logistic regression and Super Learner procedures, with performance assessed using cross-validation (CV). For BC, metabolites did not increase predictive performance over established risk factors (CV-AUCs~0.57). For CRC, prediction increased with the addition of metabolites (median CV-AUC across platforms increased from ~0.54 to ~0.60). Metabolites related to energy metabolism: adenosine, 2-hydroxyglutarate, N-acetyl-glycine, taurine, threonine, LPC (FA20:3), acetate, and glycerate; protein metabolism: histidine, leucic acid, isoleucine, N-acetyl-glutamate, allantoin, N-acetyl-neuraminate, hydroxyproline, and uracil; and dietary/microbial metabolites: myo-inositol, trimethylamine-N-oxide, and 7-methylguanine, consistently contributed to CRC prediction. Energy metabolism may play a key role in the development of CRC and may be evident prior to disease development.

5.
Vet Sci ; 11(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39195787

RESUMO

Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.

6.
Chem Biodivers ; : e202401547, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136586

RESUMO

The fungus Phialomyces macrosporus was cultured using the One Strain Many Compounds (OSMAC) strategies to evaluate its metabolome. Variations in the nutrient culture media, culture regime, and cultivation parameters can significantly influence fungal extract quantity and chemical diversity. This study aimed to explore the mycobolome of P. macrosporus in five different culture media and two different cultivation conditions using NMR-based metabolomics. Principal component analysis (PCA) of 1H NMR spectra revealed clear differentiation between these samples, highlighting the rice dextrose agar medium (RDA) and potato dextrose broth (PDB) as standard complex media for conducting a fungal metabolite screening program.

7.
Curr Drug Metab ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108113

RESUMO

OBJECTIVE: Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis. METHODS: Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed. RESULTS: In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo. CONCLUSION: The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.

8.
J Lipid Res ; : 100611, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094773

RESUMO

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1) which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid ß-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize etomoxir to etomoxir-carnitine (ETO-carnitine) prior to nearly complete etomoxir-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor) which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2ß as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of etomoxir, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.

9.
Drug Metab Dispos ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103225

RESUMO

The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) are liver specific uptake transporters in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters. PXB-mice are chimeric mice with humanized livers that are highly repopulated with human hepatocytes and have been widely used for drug metabolism and pharmacokinetics studies in drug discovery. In the present study, we measured the exposure increases (blood AUC and Cmax) of ten OATP1B substrates in PXB-mice upon co-administration with rifampin, a potent OATP1B specific inhibitor. These data in PXB-mice were then compared with the observed DDIs between OATP1B substrates and single-dose rifampin in humans. Our findings suggest that the DDIs between OATP1B substrates and rifampin in PXB-mouse are comparable with the observed DDIs in the clinic. Since most OATP1B substrates are metabolized by CYPs and/or are substrates of P-glycoprotein (P-gp), we further validated the utility of PXB-mice to predict complex DDIs involving inhibition of OATP1B, CYPs and P-gp using CsA and gemfibrozil as perpetrators. Overall, the data support that the chimeric mice with humanized livers could be a useful tool for the prediction of hepatic OATP1B-mediated DDIs in humans. Significance Statement The ability of PXB-mouse with humanized liver to predict OATP1B-mediated drug-drug interactions (DDIs) in humans was evaluated. The plasma exposure increases of ten OATP1B substrates with rifampin, an OATP1B inhibitor, in PXB-mice have a good correlation with those observed in humans. More importantly, PXB-mice can predict complex DDIs including inhibition of OATP1B, CYPs and P-gp in humans. PXB-mice are a promising useful tool to assess OATP1B-mediated clinical DDIs.

10.
J Pharmacol Exp Ther ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103232

RESUMO

Proinflammatory cytokines, elevated during inflammation caused by infection and/or autoimmune disorders, result in reduced clearance of drugs eliminated primarily by cytochrome P450 enzymes (CYPs). However, the effect of cytokines on hepatic drug transporter expression or activity has not been well-studied. Here, using plated human hepatocytes (PHHs; n=3 lots), we investigated the effect of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), on the mRNA expression and activity of hepatic drug transporters. PHHs were incubated for 72 hours at their pathophysiologically relevant plasma concentrations, both individually (0.01, 0.1, 1, 10 ng/mL) or as a cocktail (i.e., when each was combined at 0.1 or 1 ng/mL). Following cytokine cocktail exposure (1 ng/mL), significant downregulation of mRNA expression of organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, sodium/ taurocholate cotransporting polypeptide (NTCP), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), multidrug and toxin extrusion protein 1 (MATE1), multi-drug resistance protein 2, 3, and 4 (MRP2/3/4) was observed. While the mRNA expression of organic anion transporter 2 (OAT2) and organic cation transporter 1 (OCT1) was downregulated in two lots, it was upregulated in one lot. In agreement (mostly), the 1 ng/mL cytokine cocktail reduced OATP1B1/3, OATP2B1, OAT2, OCT1, and NTCP activity by 75%, 44%, 82%, 47%, and 80%, respectively. Interestingly, upregulation of OAT2 and OCT1 mRNA in one donor did not translate into the same directional change in activity. Although significant inter-lot variability was observed, in general, the above effects, using individual cytokines, could be attributed to IL-1ß and IFN-γ. Significance Statement To date, this is the first comprehensive study to investigate the effect of 4 major proinflammatory cytokines, both individually and as a cocktail, on the mRNA expression and activity of human hepatic drug transporters. The data obtained can be used in the future to predict transporter-mediated drug clearance changes during inflammation through physiologically-based pharmacokinetic modeling and simulation.

11.
J Anal Toxicol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099108

RESUMO

Clonazolam is a designer triazolobenzodiazepine first synthesized in 1971 and primarily used for its anxiolytic and sedative effects. It became a drug of misuse in 2012 and is known for its high potency and long duration of effects. Previous studies of nitrobenzodiazepines such as nitrazepam, clonazepam, flunitrazepam, and their metabolites have demonstrated that bacterial species native to the gastrointestinal tract and active during postmortem (PM) decomposition are capable of affecting positivity and compound-to-metabolite ratios. Further studies have not been performed with clonazolam; however, it possesses the nitro functional group necessary for this biotransformation. To understand whether clonazolam may be similarly affected, PM (n = 288) and driving under the influence of drugs (DUID, n = 54) cases positive for 8-aminoclonazolam reported by NMS Labs from 2020 to 2023 were selected for inclusion in this study. Concentrations of clonazolam and 8-aminoclonazolam were evaluated, and concurrent identification of parent drug and metabolite occurred less frequently in PM cases (n = 1, 0.30% of cases) than in DUID cases (n = 21, 38% of cases). The clonazolam concentration in one PM case was 13 ng/mL. In DUID cases the median clonazolam concentration was 4.0 ng/mL and ranged from 2.0-10 ng/mL. 8-Aminoclonazolam had median concentrations of 13 and 19 ng/mL and ranges of 2.0-580 and 2.8-59 ng/mL for PM and DUID cases, respectively. Due to the everchanging landscape of the DBZD market, in vitro studies of PM microbial biotransformation of clonazolam are unavailable. The data reported herein provide valuable information in the absence of such studies and represent an alternative method of investigating this phenomenon as a potential cause of parent nitrobenzodiazepine to metabolite conversion.

12.
Plant Methods ; 20(1): 117, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095910

RESUMO

BACKGROUND: Elucidating the intricate structural organization and spatial gradients of biomolecular composition within the rhizosphere is critical to understanding important biogeochemical processes, which include the mechanisms of root-microbe interactions for maintaining sustainable plant ecosystem services. While various analytical methods have been developed to assess the spatial heterogeneity within the rhizosphere, a comprehensive view of the fine distribution of metabolites within the root-soil interface has remained a significant challenge. This is primarily due to the difficulty of maintaining the original spatial organization during sample preparation without compromising its molecular content. RESULTS: In this study, we present a novel approach, RhizoMAP, in which the rhizosphere molecules are imprinted on selected polymer membranes and then spatially profiled using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We enhanced the performance of RhizoMAP by combining the use of two thin (< 20 µm) membranes (polyester and polycarbonate) with distinct MALDI sample preparations. This optimization allowed us to gain insight into the distribution of over 500 different molecules within the rhizosphere of poplar (Populus trichocarpa) grown in rhizoboxes filled with mycorrhizae soil. These two membranes, coupled with three different sample preparation conditions, enabled us to capture the distribution of a wide variety of molecules that included phytohormones, amino acids, sugars, sugar glycosides, polycarboxylic acids components of the Krebs cycle, fatty acids, short aldehydes and ketones, terpenes, volatile organic compounds, fertilizers from the soil, and others. Their spatial distribution varies greatly, with some following root traces, others showing diffusion from roots, some associated with soil particles, and many having distinct hot spots along the plant root or surrounding soil. Moreover, we showed how RhizoMAP can be used to localize the origin of the molecules and molecular transformation during root growth. Finally, we demonstrated the power of RhizoMAP to capture molecular distributions of key metabolites throughout a 20 cm deep rhizosphere. CONCLUSIONS: RhizoMAP is a method that provides nondestructive, untargeted, broad, and sensitive metabolite imaging of root-associated molecules, exudates, and soil organic matter throughout the rhizosphere, as demonstrated in a lab-controlled native soil environment.

13.
Metabolomics ; 20(5): 91, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096438

RESUMO

INTRODUCTION: Variation in DNA methylation (DNAm) in adipose tissue is associated with the pathogenesis of obesity and insulin resistance. The activity of enzymes involved in altering DNAm levels is dependent on several metabolite cofactors. OBJECTIVES: To understand the role of metabolites as mechanistic regulators of epigenetic marks, we tested the association between selected plasma metabolites and DNAm levels in the adipose tissue of African Americans. METHODS: In the AAGMEx cohort (N = 256), plasma levels of metabolites were measured by untargeted liquid chromatography-mass spectrometry; adipose tissue DNAm and transcript levels were measured by reduced representation bisulfite sequencing, and expression microarray, respectively. RESULTS: Among the 21 one-carbon metabolism pathway metabolites evaluated, six were associated with gluco-metabolic traits (PFDR < 0.05, for BMI, SI, or Matsuda index) in AAGMEx. Methylation levels of 196, 116, and 180 CpG-sites were associated (P < 0.0001) with S-adenosylhomocysteine (SAH), cystine, and hypotaurine, respectively. Cis-expression quantitative trait methylation (cis eQTM) analyses suggested the role of metabolite-level-associated CpG sites in regulating the expression of adipose tissue transcripts, including genes in G-protein coupled receptor signaling pathway. Plasma SAH level-associated CpG sites chr19:3403712 and chr19:3403735 were also associated with the expression of G-protein subunit alpha 15 (GNA15) in adipose. The expression of GNA15 was significantly correlated with BMI (ß = 1.87, P = 1.9 × 10-16) and SI (ß = -1.61, P = 2.49 × 10-5). CONCLUSION: Our study suggests that a subset of metabolites modulates the methylation levels of CpG sites in specific loci and, in turn, regulates the expression of transcripts involved in obesity and insulin resistance.


Assuntos
Metilação de DNA , Epigênese Genética , Resistência à Insulina , Obesidade , Humanos , Resistência à Insulina/genética , Obesidade/metabolismo , Obesidade/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Tecido Adiposo/metabolismo , Metabolômica
14.
Front Pharmacol ; 15: 1399598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108760

RESUMO

The liver, a complex parenchymal organ, possesses a distinctive microcirculatory system crucial for its physiological functions. An intricate interplay exists between hepatic microcirculatory disturbance and the manifestation of pathological features in diverse liver diseases. This review updates the main characteristics of hepatic microcirculatory disturbance, including hepatic sinusoidal capillarization, narrowing of sinusoidal space, portal hypertension, and pathological angiogenesis, as well as their formation mechanisms. It also summarized the detection methods for hepatic microcirculation. Simultaneously, we have also reviewed the characteristics of microcirculatory disturbance in diverse liver diseases such as acute liver failure, hepatic ischemia-reperfusion injury, viral hepatitis, non-alcoholic fatty liver disease, hepatic fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Finally, this review also summarizes the advancement in hepatic microcirculation attributed to traditional Chinese medicine (TCM) and its active metabolites, providing novel insights into the application of TCM in treating liver diseases.

15.
J Exp Bot ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110720

RESUMO

The defense response of peach (Prunus persica) to insect attack involves changes in gene expression and metabolites. Piercing/sucking insects such as green peach aphid cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to green peach aphid (GPA, Myzus persicae) were studied. The transcriptome analysis of infected peach leaves showed two different response patterns. The gene expression of aphid-susceptible peach plants infected by aphids was more similar to that of the control plants, while the gene expression of aphid-resistant peach plants infected by aphids showed strongly induced changes in gene expression compared with the response in the control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were more strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid treatment induced larger changes in aphid-resistant peaches than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed extremely significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid- susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, NACs, etc.) were more strongly induced upon GPA infestation in aphid-resistant peaches but not in aphid-susceptible peaches. Aphid feeding-dependent transcriptome and metabolite profiles provide the foundation for understanding the molecular mechanisms underlying the response of peach to aphid infestation. These results suggested that accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.

16.
Dev Cell ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39121856

RESUMO

Muscle stem cells (MuSCs) enable muscle growth and regeneration after exercise or injury, but how metabolism controls their regenerative potential is poorly understood. We describe that primary metabolic changes can determine murine MuSC fate decisions. We found that glutamine anaplerosis into the tricarboxylic acid (TCA) cycle decreases during MuSC differentiation and coincides with decreased expression of the mitochondrial glutamate deaminase GLUD1. Deletion of Glud1 in proliferating MuSCs resulted in precocious differentiation and fusion, combined with loss of self-renewal in vitro and in vivo. Mechanistically, deleting Glud1 caused mitochondrial glutamate accumulation and inhibited the malate-aspartate shuttle (MAS). The resulting defect in transporting NADH-reducing equivalents into the mitochondria induced compartment-specific NAD+/NADH ratio shifts. MAS activity restoration or directly altering NAD+/NADH ratios normalized myogenesis. In conclusion, GLUD1 prevents deleterious mitochondrial glutamate accumulation and inactivation of the MAS in proliferating MuSCs. It thereby acts as a compartment-specific metabolic brake on MuSC differentiation.

17.
Open Life Sci ; 19(1): 20220909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119482

RESUMO

Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.

18.
Interdiscip Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112911

RESUMO

The exploration of the interactions between diseases and metabolites holds significant implications for the diagnosis and treatment of diseases. However, traditional experimental methods are time-consuming and costly, and current computational methods often overlook the influence of other biological entities on both. In light of these limitations, we proposed a novel deep learning model based on metapath aggregation of tripartite heterogeneous networks (MAHN) to explore disease-related metabolites. Specifically, we introduced microbes to construct a tripartite heterogeneous network and employed graph convolutional network and enhanced GraphSAGE to learn node features with metapath length 3. Additionally, we utilized node-level and semantic-level attention mechanisms, a more granular approach, to aggregate node features with metapath length 2. Finally, the reconstructed association probability is obtained by fusing features from different metapaths into the bilinear decoder. The experiments demonstrate that the proposed MAHN model achieved superior performance in five-fold cross-validation with Acc (91.85%), Pre (90.48%), Recall (93.53%), F1 (91.94%), AUC (97.39%), and AUPR (97.47%), outperforming four state-of-the-art algorithms. Case studies on two complex diseases, irritable bowel syndrome and obesity, further validate the predictive results, and the MAHN model is a trustworthy prediction tool for discovering potential metabolites. Moreover, deep learning models integrating multi-omics data represent the future mainstream direction for predicting disease-related biological entities.

19.
Xenobiotica ; : 1-15, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39102472

RESUMO

Aficamten, a small molecule selective inhibitor of cardiac myosin, was characterised in preclinical in vitro and in vivo studies.Protein binding in human plasma was 10.4% unbound and ranged from 1.6% to 24.9% unbound across species. Blood-to-plasma ratios ranged from 0.69 to 1.14 across species. Aficamten hepatic clearance in human was predicted to be low from observed high metabolic stability in vitro in human liver microsomes. Aficamten demonstrated high permeability in Caco-2 cell monolayers.Aficamten in vivo clearance was low across species at 8.8, 2.1, 3.3, and 11 mL/min/kg in mouse, rat, dog, and monkey, respectively. The volume of distribution was low-to-high ranging from 0.53 in rat to 11 L/kg in dog. Oral bioavailability ranged from 41% in monkey to 98% in mouse.Aficamten was metabolised in vitro to eight metabolites with hydroxylated metabolites M1a and M1b predominating. CYP phenotyping indicated multiple CYPs (2C8, 2C9, 2D6, and 3A4) contributing to the metabolism of aficamten.Human clearance (1.1 mL/min/kg) and volume of distribution (6.5 L/kg) were predicted using 4-species allometry employing 'rule-of-exponents'. A predicted 69 hour half-life is consistent with observed half-life in human Phase-1.No CYP-based drug-drug interaction liability as a precipitant was predicted for aficamten.

20.
J Adv Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089618

RESUMO

INTRODUCTION: Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood. OBJECTIVES: The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster. METHODS: Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1. RESULTS: Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 µg/mL) completely degraded 1 µg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction. CONCLUSION: These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...