Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1316: 342879, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969416

RESUMO

BACKGROUND: Chirality is a ubiquitous phenomenon in nature, but enantiomers exhibit different pharmacological activities and toxicological effects. Therefore, Chiral recognition plays a pivotal role in various fields such as life sciences, chemical synthesis, drug development, and materials science. The synthesis of novel chiral composites with well-defined loading capabilities and ordered structures holds significant potential for electrochemical chiral recognition applications. However, the design of selective and stable electrochemical chiral recognition materials remains a challenging task. RESULT: In this work, we construct a simple and rapid electrochemical sensing platform for tryptophan (Trp) enantiomer recognition using cyclodextrin-modified microporous organic network as chiral recognition agent. CD-MON with chiral microenvironment was prepared by Sonogashira-Hagihara coupling reaction of the chiral molecule heptyl-6-iodo-6-deoxyß-cyclodextrin and 1, 4-Diethynylbenzene. The adhesion of BSA makes CD-MON firmly fixed on the electrode surface, and as a chiral protein, it can improve the chiral recognition ability through synergistic effect. Chiral amino acids are in full contact with the chiral microenvironment during pore conduction of MON, and L-Trp is more stably bound to CD-MON/BSA due to steric hindrance, host-guest recognition and hydrogen bonding. Therefore, the electrochemical sensor can effectively identify tryptophan enantiomers (IL-Trp/ID-Trp = 2.02), and it exhibits a detection limit of 2.6 µM for L-Trp. UV-Vis spectroscopy confirmed the adsorption capacity of CD-MON towards tryptophan enantiomers in agreement with electrochemistry results. SIGNIFICANCE: The prepared chiral sensor has excellent stability, reproducibility (RSD = 3.7%) and selectivity, realizes the quantitative detection of single isomer in tryptophan racemic and quantitative analysis in real samples with 94.0%-101.0% recovery. This work represents the first application of MON in chiral electrochemistry which expands the application scope of chiral sensors and holds great significance in separation science and electrochemical sensing.


Assuntos
Ciclodextrinas , Técnicas Eletroquímicas , Estereoisomerismo , Técnicas Eletroquímicas/métodos , Ciclodextrinas/química , Porosidade , Triptofano/análise , Triptofano/química , Aminoácidos/análise , Aminoácidos/química , Limite de Detecção , Animais , Eletrodos , Soroalbumina Bovina/química
2.
J Chromatogr A ; 1730: 465140, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986401

RESUMO

In this work, a novel polyaniline-modified magnetic microporous organic network (MMON-PANI) composite was fabricated for effective magnetic solid phase extraction (MSPE) of five typical nonsteroidal anti-inflammatory drugs (NSAIDs) from animal-derived food samples before high performance liquid chromatography (HPLC) detection. The core-shell sea urchin shaped MMON-PANI integrates the merits of Fe3O4, MON, and PANI, exhibiting large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites to NSAIDs. Convenient and effective extraction of trace NSAIDs from chicken, beef and pork samples is realized on MMON-PANI via the synergetic π-π, hydrogen bonding, hydrophobic, and electrostatic interactions. Under optimal conditions, the MMON-PANI-MSPE-HPLC-UV method exhibits wide linear ranges (0.2-1000 µg L-1), low limits of detection (0.07-1.7 µg L-1), good precisions (intraday and inter-day RSDs < 5.4 %, n = 3), large enrichment factors (98.6-99.9), and less adsorbent consumption (3 mg). The extraction mechanism and selectivity of MMON-PANI are also evaluated in detail. This work proves the incorporation of PANI onto MMON is an efficient way to promote NSAIDs enrichment and provides a new strategy to synthesize multifunctional MON-based composites in sample pretreatment.


Assuntos
Compostos de Anilina , Anti-Inflamatórios não Esteroides , Extração em Fase Sólida , Compostos de Anilina/química , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Suínos , Galinhas , Bovinos , Adsorção , Carne/análise , Porosidade , Reprodutibilidade dos Testes
3.
J Chromatogr A ; 1730: 465158, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025023

RESUMO

The overuse of nonsteroidal anti-inflammatory drugs (NSAIDs) poses many serious environmental and food safety concerns. Development of effective and sensitive sample pretreatment method for monitoring trace NSAIDs from complex samples is of great significance. Depending on the ionic and aromatic structures of NSAIDs, a cationic microporous organic network (MON) named TEPM-BBDC with large specific surface area, good solvent and thermal stabilities, and numerous interaction sites was designed and prepared for efficient solid-phase extraction (SPE) of four typical NSAIDs (flurbiprofen, ketoprofen, naproxen, and diclofenac sodium) from environmental water and milk samples. By anchoring the ionic groups in the conjugated MON frameworks, the prepared TEPM-BBDC offered good extraction for NSAIDs based on the π-π, hydrophobic, ion exchange, and electrostatic interactions. Under the optimal extraction conditions (initial concentration of each NSAID: 200 g L-1; sample volume: 50 mL; desorption solvent: 1.5 mL of MeOH + 1 % NH3·H2O; sample loading rate: 5 mL min-1; NaCl concentration: 0 mmol L-1; pH = 5), the proposed TEPM-BBDC-SPE-HPLC-UV method owned wide linear range (0.50-1000 g L-1), low limits of detection (0.10-0.40 g L-1), large enrichment factors (92.2-99.2), good precisions (intra-day and inter-day, RSD% = 1.3-7.8 %, n = 6) and reproducibility (column-to-column, RSD% = 8.0 %, n = 3). The developed method also exhibited good recoveries (83.6-113.4 %) for the determination of NSAIDs in river water, lake water and milk samples. This work not only revealed the potential of TEPM-BBDC for SPE of ionic NSAIDs in complex samples, but also highlighted the prospect of ionic MONs in sample pretreatment.


Assuntos
Anti-Inflamatórios não Esteroides , Limite de Detecção , Leite , Extração em Fase Sólida , Poluentes Químicos da Água , Extração em Fase Sólida/métodos , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/isolamento & purificação , Leite/química , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Cátions/química , Reprodutibilidade dos Testes , Adsorção
4.
Food Chem ; 460(Pt 1): 140529, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39047468

RESUMO

In this work, a novel fluorinated magnetic microporous organic network (Fe3O4@FMON) was exquisitely designed and synthesized for highly efficient and selective magnetic solid phase extraction (MSPE) of fluorinated benzoylurea insecticides (BUs) from complex tea beverage samples. The Fe3O4@FMON exhibited good extraction for BUs via the pre-designed hydrophobic, π-π stacking, hydrogen bonding and specific FF interactions. A sensitive Fe3O4@FMON-based MSPE-HPLC-UV method with wide linear range (0.10-1000 µg L-1, R2 ≥ 0.996), low limits of detection (0.01-0.02 µg L-1), and large enrichment factors (85.6-98.0) for BUs from tea beverage samples was developed. By decorating F elements within MON's networks, the Fe3O4@FMON characterized good hydrophobicity and chemical stability, which could be reused at least 8 times without decrease of recoveries. This work demonstrated the great prospects of Fe3O4@FMON for enriching trace BUs from complex substrates and triggered the potential of FMON for sample pretreatment of fluorinated analytes.

5.
Talanta ; 277: 126440, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897013

RESUMO

Owing to their incomplete digestion in the human body and inadequate removal by sewage treatment plants, antiepileptic drugs (AEDs) accumulate in water bodies, potentially affecting the exposed humans and aquatic organisms. Therefore, sensitive and reliable detection methods must be urgently developed for monitoring trace AEDs in environmental water samples. Herein, a novel phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON-PBA) was designed and synthesized via the thiol-yne click post-modification strategy for selective and efficient magnetic solid-phase extraction (MSPE) of trace AEDs from complex sample matrices through the specific B-N coordination, π-π, hydrogen bonding, electrostatic, and host-guest interactions. Fe3O4@CD-MON-PBA exhibited a large surface area (118.5 m2 g-1), rapid magnetic responsiveness (38.6 emu g-1, 15 s), good stability and reusability (at least 8 times), and abundant binding sites for AEDs. Under optimal extraction conditions, the proposed Fe3O4@CD-MON-PBA-MSPE-HPLC-UV method exhibited a wide linear range (0.5-1000 µg L-1), low limits of detection (0.1-0.5 µg L-1) and quantitation (0.3-2 µg L-1), good anti-interference ability, and large enrichment factors (92.2-104.3 to 92.3-98.0) for four typical AEDs. This work confirmed the feasibility of the thiol-yne click post-synthesis strategy for constructing novel and efficient multifunctional magnetic CD-MONs for sample pretreatment and elucidated the significance of B-N coordination between PBA and N-containing AEDs.


Assuntos
Anticonvulsivantes , Ácidos Borônicos , Química Click , Ciclodextrinas , Extração em Fase Sólida , Compostos de Sulfidrila , Ácidos Borônicos/química , Anticonvulsivantes/química , Anticonvulsivantes/isolamento & purificação , Anticonvulsivantes/síntese química , Extração em Fase Sólida/métodos , Ciclodextrinas/química , Porosidade , Compostos de Sulfidrila/química , Alcinos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Limite de Detecção
6.
J Chromatogr A ; 1728: 464991, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38788322

RESUMO

The abnormal estrogens levels in human body can cause many side effects and diseases, but the quantitative detection of the trace estrogens in complex biological samples still remains great challenge. Here we reported the fabrication of a novel core-shell structured magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON) for rapid magnetic solid phase extraction (MSPE) of four estrogens in human serum and urine samples prior to HPLC-UV determination. The uniform spherical core-shell Fe3O4@CD-MONs was successfully regulated by altering the reactive monomers and solvents. The Fe3O4@CD-MONs owned high specific surface area, good hydrophobicity, large superparamagnetism, and abundant extraction sites for estrogens. Under optimal conditions, the proposed MSPE-HPLC-UV method provided wide linearity range (2.0-400 µg L-1), low limits of detection (0.5-1.0 µg L-1), large enrichment factors (183-198), less adsorbent consumption (3 mg), short extraction time (3 min), and good stability and reusability (at least 8 cycles). The established method had also been successfully applied to the enrichment and detection of four estrogens in serum and urine samples with a recovery of 88.4-105.1 % and a relative standard deviation of 1.0-5.9 %. This work confirmed the feasibility of solvent and monomer regulation synthesis of Fe3O4@CD-MON composites, and revealed the great prospects of magnetic CD-MONs for efficient enrichment of trace estrogens in complex biological samples.


Assuntos
Estrogênios , Limite de Detecção , Extração em Fase Sólida , beta-Ciclodextrinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Estrogênios/urina , Estrogênios/sangue , Estrogênios/isolamento & purificação , Estrogênios/análise , Estrogênios/química , Extração em Fase Sólida/métodos , beta-Ciclodextrinas/química , Solventes/química , Porosidade , Nanopartículas de Magnetita/química , Adsorção
7.
J Chromatogr A ; 1722: 464899, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626542

RESUMO

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.


Assuntos
Flúor , Fluorocarbonos , Nanopartículas de Magnetita , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Fluorocarbonos/química , Fluorocarbonos/análise , Fluorocarbonos/isolamento & purificação , Flúor/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Nanopartículas de Magnetita/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção
8.
J Chromatogr A ; 1724: 464915, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663319

RESUMO

Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 µg L-1), low limits of detection (1.4-35 µg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.


Assuntos
Medicamentos de Ervas Chinesas , Limite de Detecção , Extração em Fase Sólida , Zearalenona , Cromatografia Líquida de Alta Pressão/métodos , Zearalenona/análise , Zearalenona/química , Zearalenona/isolamento & purificação , Extração em Fase Sólida/métodos , Adsorção , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicina Tradicional Chinesa , Porosidade , Nanopartículas de Magnetita/química
9.
J Chromatogr A ; 1721: 464844, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547678

RESUMO

The highly conjugated and hydrophobic characteristics of microporous organic networks (MONs) have largely impeded their broad applications in sample pretreatment especially for the polar or ionic analytes. In this work, a novel uniform hollow shaped sulfonate group functionalized MON (H-MON-SO3H-2) was synthesized via the sacrificial template method for the efficient solid phase extraction (SPE) of sulfonamides (SAs) from environmental water, milk, and honey samples prior to HPLC analysis. H-MON-SO3H-2 exhibited large specific surface area, penetrable space, good stability, and numerous hydrogen bonding, electrostatic, hydrophobic and π-π interaction sites, allowing sensitive SPE of SAs with wide linear range (0.150-1000 µg L-1), low limit of detection (0.045-0.188 µg L-1), good precisions (intra-day and inter-day RSD < 7.3%, n = 5), large enrichment factors (95.7-98.5), high adsorption capacities (250.4-545.0 mg g-1), and satisfactory reusability (more than 80 times). Moreover, the established method was successfully applied to extract SAs from spiked samples with the recoveries of 86.1-104.3%. This work demonstrated the great potential of H-MON-SO3H-2 in the efficient SPE of trace SAs in complex environmental water and food samples and revealed the prospect of hollow MONs in sample pretreatment.


Assuntos
Antibacterianos , Mel , Antibacterianos/análise , Mel/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Sulfanilamida/análise , Água/química , Sulfonamidas/análise
10.
J Chromatogr A ; 1715: 464625, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171066

RESUMO

Endocrine disrupting chemicals (EDCs) are a typical class of natural or man-made endogenous hormone agonists or antagonists that can directly or potentially interfere with human endocrine system. However, it is still difficult to analyze trace EDCs directly from complex environment and food matrices. Therefore, the proper sample pretreatment is highly desired and the preparation of efficient adsorbents is of great challenge and importance. Herein, we report the facile one-pot solvothermal synthesis of Fe3O4 nanoparticle doped magnetic ß-cyclodextrin microporous organic network composites (MCD-MONs) for the magnetic solid phase extraction (MSPE) of four phenolic EDCs in water and food takeaway boxes prior to the high-performance liquid chromatography analysis. The sheet-like Fe3O4 doped MCD-MONs offered good magnetic property (16.5 emu g-1) and stability, and provided numerous hydrogen bonding, hydrophobic, π-π, and host-guest interaction sites for EDCs. Under the optimal experimental conditions, the established method was successfully verified with wide linear range (2.0-1000 µg L-1), low limits of detection (0.6-1.0 µg L-1), good precisions (intra-day and inter-day RSDs < 5.2 %, n = 3), large enrichment factors (88-98) and adsorption capacity (90.3-255.8 mg g-1), short extraction time (6 min), less adsorbent consumption (3 mg), and good reusability (at least 8 times) for EDCs. The proposed method was successfully applied to detect the trace EDCs in real samples with the recovery of 84.0-99.7 %. This work demonstrated the great potential of MCD-MONs for the efficient MSPE of trace EDCs from complex food takeaway boxes and water samples and uncovered the prospect of CD-based MONs in sample pretreatment.


Assuntos
Disruptores Endócrinos , beta-Ciclodextrinas , Humanos , Disruptores Endócrinos/análise , Água/química , Magnetismo/métodos , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , beta-Ciclodextrinas/química , Extração em Fase Sólida/métodos , Limite de Detecção
11.
Food Chem ; 443: 138559, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280368

RESUMO

Cephalosporins (CEFs) are a class of widely used toxic antibiotics. Development of a rapid and sensitive method for detecting trace CEF residues in food samples is still challenging. Herein, we report preparation of an amide and carboxyl groups dual-functionalized core-shelled magnetic microporous organic network MMON-COOH-2CONH for efficient magnetic solid-phase extraction (MSPE) of CEFs from milk powder samples. Under optimal conditions, the established MMON-COOH-2CONH-MSPE-HPLC-UV method owns wide linear range (3-10000 µg kg-1), low limits of detection (1-3 µg kg-1), large enrichment factors (93.9-99.4), low adsorbent consumption (3 mg), and short extraction time (6 min). Synergistic extraction mechanisms of ionic bonding, hydrogen bonding, π-π, and hydrophobic interactions were elucidated by both theoretical density functional theory calculations and experimental data. This study confirms that preparation of dual-functionalized MMONs and introduction of ionic groups are feasible to promote MMONs application in sample pretreatment.


Assuntos
Amidas , Cefalosporinas , Magnetismo , Fenômenos Físicos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Limite de Detecção
12.
Food Chem ; 429: 136808, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459710

RESUMO

A zwitterionic magnetic microporous organic network (MMON-SO3H-NH2) with numerous amino and sulfonic acid ion-pare binding sites was designed and synthesized for efficient magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) from meat samples. The core-shell MMON-SO3H-NH2 offered large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites for FQs. The density functional theory and independent gradient model evaluations confirmed hydrogen bonding, π-π and ion-pair interactions between MMON-SO3H-NH2 and FQs. Under the optimal conditions, the established MMON-SO3H-NH2-MSPE-HPLC-UV method gave wide linear range (0.15-1000 µg L-1), low limits of detection (0.05-4.5 µg L-1) and limits of quantitation (0.15-13 µg L-1), and high enrichment factors (82.1-99.6) using 3 mg of adsorbent. This work demonstrates that the preparation of zwitterionic MONs is an efficient way to promote the extraction performance of MONs for zwitterionic targets and provides an effective sample pretreatment method for enriching and monitoring FQs in complex food matrices.


Assuntos
Fluoroquinolonas , Extração em Fase Sólida , Fluoroquinolonas/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos , Antibacterianos , Carne/análise , Fenômenos Magnéticos , Limite de Detecção
13.
Anal Bioanal Chem ; 415(18): 4533-4543, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017725

RESUMO

Recently, the good physical and chemical properties, well-defined pore architectures, and designable topologies have made microporous organic networks (MONs) excellent potential candidates in high-performance liquid chromatography (HPLC). However, their superior hydrophobic structures restrict their application in the reversed-phase mode. To solve this obstacle and to expand the application of MONs in HPLC, we realized the thiol-yne "click" postsynthesis of a novel hydrophilic MON-2COOH@SiO2-MER (MER denotes mercaptosuccinic acid) microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. SiO2 was initially decorated with MON-2COOH using 2,5-dibromoterephthalic acid and tetrakis(4-ethynylphenyl)methane as monomers, and MER was then grafted via thiol-yne click reaction to yield MON-2COOH@SiO2-MER microspheres (5 µm) with a pore size of ~1.3 nm. The -COOH groups in 2,5-dibromoterephthalic acid and the post-modified MER molecules considerably improved the hydrophilicity of pristine MON and enhanced the hydrophilic interactions between the stationary phase and analytes. The retention mechanisms of the MON-2COOH@SiO2-MER packed column were fully discussed with diverse hydrophobic and hydrophilic probes. Benefiting from the numerous -COOH recognition sites and benzene rings within MON-2COOH@SiO2-MER, the packed column exhibited good resolution for the separation of sulfonamides, deoxynucleosides, alkaloids, and endocrine-disrupting chemicals. A column efficiency of 27,556 plates per meter was obtained for the separation of gastrodin. The separation performance of the MON-2COOH@SiO2-MER packed column was also demonstrated by comparing with those of MON-2COOH@SiO2, commercial C18, ZIC-HILIC, and bare SiO2 columns. This work highlights the good potential of the thiol-yne click postsynthesis strategy to construct MON-based stationary phases for mixed-mode chromatography.


Assuntos
Alcaloides , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides/análise , Interações Hidrofóbicas e Hidrofílicas , Compostos de Sulfidrila , Cromatografia de Fase Reversa/métodos
14.
Talanta ; 257: 124391, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854206

RESUMO

Microporous organic networks (MONs) are promising materials for the magnetic solid-phase extraction (MSPE) of trace targets from diverse complex samples. However, all the reported magnetic MONs (MMONs) are mono-functionalized and synthesized by refluxing at high temperatures, which is not an energy-efficient and environmentally friendly method. Here, for the first time, we report the room-temperature fabrication of a novel dual-functionalized MMON (MMON-B) for the efficient MSPE of typical vanillin additives from food samples prior to high-performance liquid chromatography (HPLC). The conjugated MMON-B with numerous -OH and -NH2 groups afforded good extraction for vanillins via π-π, hydrophobic, and hydrogen-bonding interactions. The factors affecting the extraction were studied in detail. Under the optimal conditions, the developed MMON-B-MSPE-HPLC-UV method exhibited wide linear range (0.50-1200 µg L-1), low limits of detection (0.10-0.15 µg L-1), and good reusability and stability. Therefore, MMON-B was successfully used to enrich vanillins in complex food samples. The morphology and extraction efficiency of the room-temperature synthesized MMON-B were comparable with those of the MMON-B synthesized via the conventional reflux method, indicating that the room-temperature fabrication method is a good alternative to the reflux method. This study presents the feasibility of using a room-temperature method for synthesizing dual-functionalized MONs, and the findings may significantly promote the application of MONs in the MSPE of trace targets from complex matrices.


Assuntos
Alimentos , Magnetismo , Temperatura , Fenômenos Magnéticos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Limite de Detecção
15.
Chemosphere ; 315: 137731, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608878

RESUMO

Flumequine (FLU) and nadifloxacin (NAD), as emerging contaminants, have received extensive attention recently. In this study, a triazine-based microporous organic network (TMON) was synthetized and developed as an excellent adsorbent for FLU and NAD. The adsorption behavior and influence factors were investigated in both single and binary systems. Insight into the adsorption mechanisms were conducted through experiments, models, and computational studies, from macro and micro perspectives including functional groups, adsorption sites, adsorption energy and frontier molecular orbital. The results showed that the maximum adsorption capacities of TMON for FLU and NAD are 325.27 and 302.28 mg/g under 30 °C higher than records reported before. TMON exhibits the better adaptability and anti-interference ability for influence factors, leading to the preferable application effect in kinds of real water samples. TMON also shows the application potentials for the adsorption of other quinolone antibiotics and CO2 capture. Hydrogen-bonding interaction played the most critical role compared to π-π stacking effect, π-π electron-donor-acceptor interaction, CH-π interaction, and hydrophobic interaction during the adsorption. TMON could be regarded as a promising environmental adsorbent for its large surface area, stable physical and chemical properties, excellent recyclability, and wide range of applications.


Assuntos
Triazinas , Poluentes Químicos da Água , Adsorção , NAD , Poluentes Químicos da Água/análise
16.
Food Chem ; 390: 133217, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597085

RESUMO

Bisphenols and triclosan have been used in various products, and exposure to these chemicals may affect human health. The present study proposes a sensitive method for the determination of bisphenols A, F, S, and triclosan. The fiber was coated by amino/hydroxyl bifunctional microporous organic network and protected by polyvinylidene fluoride hollow fiber membrane for direct immersion solid phase microextraction. The limit of detection was 0.005 µg/L (µg/kg), and the recoveries were in the range of 76.7% to 107.5% (87.4% to 107.6%) for breast milk (infant formula), with intra-day and inter-day precisions <10.5% (7.3%) and 13.6% (8.4%), respectively. Fiber-to-fiber reproducibility of < 9.5% and a lifespan of >100 cycles were obtained. The 95th percentile estimated daily intake of total bisphenols was close to temporary tolerable daily intake for infants fed by human milk, which highlighted the needs for further attention on human exposure to BPA and its substitutes.


Assuntos
Microextração em Fase Sólida , Triclosan , Feminino , Humanos , Lactente , Fórmulas Infantis , Leite Humano , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos
17.
Carbohydr Polym ; 276: 118786, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823797

RESUMO

Here, a novel multifunctional ß-cyclodextrin microporous organic network (CD-MON) has been successfully synthesized and used to remove bisphenol A (BPA) from water. The morphology and composition of the synthesized CD-MON were confirmed. The combination of hydrophobic interaction, π-π interaction inclusion mechanism and hydrogen bonding endowed CD-MON to exhibit superior adsorption capacity toward BPA. The adsorption kinetics and isotherms of BPA and other four model aromatic pollutants on CD-MON were studied. CD-MON could maintain adsorption efficiency toward BPA over wide pH ranges and without being affected by the ionic strengths, co-existing inorganic ions and humic acid. The optimal conditions and removal efficiency of BPA were screened by response surface analysis. In addition, nearly unchanged in the adsorption efficiency toward BPA was observed after five regeneration cycles on CD-MON. CD-MON can adsorb about 80% of five model aromatic pollutants from the water within 40 s in the flow-through experiments. This novel adsorbent gives great promise for practical wastewater remediation.

18.
J Hazard Mater ; 424(Pt B): 127485, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655878

RESUMO

Microporous organic networks (MONs) have shown great potential in the removal of environmental contaminants. However, all studies have focused on the design and construction of novel and efficient adsorbents, and the recycling and reuse of adsorbates were disregarded. In this study, we report a feasible approach to synthesize renewable and reusable MONs by using target halogenated contaminants such as tetrabromobisphenol A (TBBPA), 2,3-dichlorophenol (2,3-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) as starting monomers. TBBPA, 2,3-DCP, and 2,4,6-TCP acted as hazardous contaminants and starting monomers for MONs, leading to the recycling of both adsorbents and adsorbates. The obtained TBBPA-MON, 2,3-DCP-MON, and 2,4,6-TCP-MON not only offered good reusability and large adsorption capacity for their elimination but also provided good adsorption for other phenolic contaminants relying on multiple interactions. Density functional theory calculation indicated the dominant role of π-π and hydrophobic interactions and the secondary role of hydrogen bonding interactions during the adsorption process. The used TBBPA-MON could be reused and the eluted TBBPA could be recycled and renewed for the construction of fresh MONs. This study provided a feasible approach to design and synthesize renewable MONs for environmental contaminants.


Assuntos
Fenóis , Adsorção , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
19.
J Chromatogr A ; 1655: 462521, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509692

RESUMO

As an effective sample pretreatment approach, stir bar sorptive extraction (SBSE) has shown great prospects in static microextraction and selective enrichment. In this work, bifunctional microporous organic network (B-MON) with the coexistence of amino and hydroxyl groups was firstly designed and synthesized as a novel coating for efficient SBSE of parabens and flavors in combination with high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA). Linked by covalent bonds to form an extension of the aromatic ring skeleton, B-MON was a tailored adsorbent featured by porous structure and abundant hydrogen bonding sites for analytes with benzene/naphthalene rings and OH/COOH groups. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the proposed B-MON-SBSE-HPLC-PDA method offered good linearity (0.10-100 µg L-1) with correlation coefficients R2 ≥ 0.995, low limits of detection (0.010-0.035 µg L-1) and limits of quantification (0.035-0.115 µg L-1), and favorable enrichment factors (40-49). Furthermore, the developed method has been applied to the analysis of parabens and flavors in cosmetic and food samples with recoveries ranging from 80.4 to 109.6%. This method was also feasible to extract the analytes with benzene/naphthalene rings and OH/COOH groups, such as the plant growth regulators and non-steroidal anti-inflammatory drugs. The present study provided a new way to synthesize bifunctional MONs for SBSE of trace analytes in complex samples.


Assuntos
Parabenos , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Porosidade , Reprodutibilidade dos Testes
20.
ACS Appl Mater Interfaces ; 13(33): 39905-39914, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374514

RESUMO

The lack of functional groups or binding sites largely hindered the broad application of microporous organic networks (MONs). Herein, we report the fabrication of the sulfonate group-enriched magnetic MON composite (MMON-SO3H@SO3Na) via the combination of the sulfonic acid group containing the monomer and thiol-yne click postmodification for efficient magnetic solid-phase extraction (MSPE) of benzimidazole fungicides (BZDs) from complex sample matrices. The well-defined core-shell-structured MMON-SO3H@SO3Na was obtained and served as an advanced adsorbent for MSPE for concentrating and monitoring trace BZDs. The MMON-SO3H@SO3Na with numerous sulfonate groups provides plenty of ion-exchange, hydrogen-bonding, and π-π sites, leading to the favorable affinity to BZDs via multiple interaction mechanisms. The MMON-SO3H@SO3Na-based MSPE-high-performance liquid chromatography method afforded a wide linear range, low limits of detection, large enrichment factors, good precisions, and reusability for BZDs. Trace BZDs in complex vegetables and fruit samples were successfully detected by the established method. The MMON-SO3H@SO3Na also exhibited good selectivity toward multiple types of polar contaminants containing hydrogen-bonding sites and aromatic structures. This work provided a new postsynthesis strategy for constructing novel and multifunctioned magnetic MONs for preconcentration of trace analytes in a complex matrix.


Assuntos
Alcanossulfonatos/síntese química , Alcinos/química , Benzimidazóis/isolamento & purificação , Análise de Alimentos/métodos , Fungicidas Industriais/isolamento & purificação , Compostos de Sulfidrila/química , Cromatografia Líquida de Alta Pressão/métodos , Química Click , Óxido Ferroso-Férrico/química , Frutas/química , Limite de Detecção , Magnetismo/métodos , Microesferas , Porosidade , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...