Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
J Orthop Surg Res ; 19(1): 467, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118123

RESUMO

BACKGROUND: Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS: Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS: MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS: MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Osteossarcoma , Via de Sinalização Wnt , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Via de Sinalização Wnt/fisiologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Apoptose/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Movimento Celular/fisiologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica
2.
Heliyon ; 10(15): e34968, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170340

RESUMO

Background: The interaction between cancer cells and the tumor microenvironment is of critical importance in liver cancer. Jiedu Granule formula (JDF) has been shown to minimize the risk of recurrence and metastasis following liver cancer resection. Investigating the mechanism underlying the therapeutic effects of JDF can extend its field of application and develop novel treatment approaches. Methods: We established a rat liver orthotopic transplantation tumor model, and recorded the prognostic effects of JDF adjuvant therapy on the recurrence and metastasis of liver cancer. Liver and lung tissues were collected for immunofluorescence staining and H&E staining, respectively. In addition, THP-1 cells were incubated with PMA and IL-4 to induce them to differentiate into M2 macrophages. CSF-1 expression was knocked down using lentivirus to determine the function of CSF-1. Liver cancer cells were cultured with a conditioned medium (CM) or co-cultured with macrophages. Cell viability was determined using the MTT assay. The levels of CSF-1, CSF-1R, E-cadherin, N-cadherin, PI3K, AKT, and cleaved caspase-3 were detected using ELISA, Western blotting and qPCR. The ability of cells to migrate was assessed using cell scratch and transwell assays. Apoptosis was evaluated using flow cytometry. Results: The JDF treatment decreased the risk of liver cancer metastasis after surgery and the infiltration of CD206/CD68 cells in liver cancer tissue. In cell experiments, JDF showed effects in suppressing M2 macrophages activity and downregulating the expression of CSF-1 and CSF-1R. The concentration of CSF-1 in the supernatant was also lower in the JDF-treated group. Futhermore, M2-CM was found to promote cancer cell migration and epithelial-mesenchymal transition (EMT); however, these effects were weakened after administering JDF. Knocking down endogenous CSF-1 in M2 macrophages resulted in a comparable suppression of cancer cell migration and EMT. Additionally, JDF treatment inhibited activation of the PI3K/AKT pathway, thus promoting the apoptosis of M2 macrophages. Conclusions: Treatment with JDF reduced the EMT and migratory capacity of liver cancer cells, which might be attributed to the inhibition of M2 macrophage infiltration and interruption of the CSF-1/PI3K/AKT signaling pathway. This mechanism may hold significant implications for mitigating the risk of metastatic spread in the aftermath of hepatic surgery.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38956806

RESUMO

Objective: This study analyzed the influence of p120-catenin (CTNND1) on the malignant characteristics of glioma and elucidated the potential underlying mechanism. Methods: The p120 expression level was assessed in the brain tissues of 42 glioma patients and 10 patients with epilepsy by using the immunohistochemical method. Meanwhile, quantitative PCR technology was employed to assess the expression of P120 in the brain tissues of 71 glioma patients and 13 epilepsy patients. LN229, U251, and U87 glioma cells were used for in vitro analysis and categorized into four treatment groups: siRNA-BC group (no RNA sequence was transfected), siRNA-NC group (transfected control RNA sequences with no effect), and siRNA-1 and siRNA-2 groups (two p120-specific interfering RNA transfection). p120 expression in these treatment groups was quantified by western blotting assay. The migratory and invasive capabilities of glioma cells were studied by wound healing assay and Transwell invasion assay, respectively, under different treatment conditions. MTT assay and cell cycle and apoptosis assay were used to determine glioma cell proliferation and apoptosis, respectively. Enzyme-labeled assay was performed to measure intracellular calcium ion concentration. Immunofluorescence assay was performed for determining microtubule formation and glioma cell distribution. Results: Brain tissues of the glioma group exhibited a remarkable increase in the p120 expression level as compared to brain tissues of the nontumor group (P < 0.05). Furthermore, a strong positive correlation was noted between the malignancy degree in glioma brain tissues and p120 expression in Western blotting (r = 0.906, P = 0.00) and QT-PCR (F=830.6, P<0.01). Compared to the BC and NC groups, the siRNA transfection groups showed a significant suppression in p120 expression in glioma cells (P < 0.05), with a marked attenuation in the invasive, migratory, and proliferative capabilities of glioma cells as well as an increase in apoptotic potential (P < 0.05). Enzyme-labeled assay showed a remarkable increase in calcium concentration in glioma cells after siRNA treatment. Immunofluorescence assay revealed that the microtubule formation ability of glioma cells reduced after siRNA treatment. Conclusion: p120 has a pivotal involvement in facilitating glioma cell invasion and proliferation by potentially modulating these processes through its involvement in microtubule formation and regulation of intracellular calcium ion levels.

4.
BMC Cancer ; 24(1): 773, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937694

RESUMO

OBJECTIVE: Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS: In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS: After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS: Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.


Assuntos
Neoplasias Gástricas , Ubiquitina Tiolesterase , Ubiquitinação , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Camundongos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Metástase Neoplásica , Perfilação da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Prognóstico , Multiômica
5.
Viruses ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38932110

RESUMO

Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV's involvement remains uncertain. Among 300 HBV-associated HCC serum samples from Taiwan's National Health Research Institutes, 2.7% (8/300) tested anti-HDV positive, with 62.7% (5/8) of these also HDV RNA positive. Genotyping revealed HDV-2 in one sample, HDV-4 in two, and two samples showed mixed HDV-2/HDV-4 infection with RNA recombination. A mixed-genotype infection revealed novel mutations at the polyadenylation signal, coinciding with the ochre termination codon for the L-HDAg. To delve deeper into the possible oncogenic properties of HDV-2, the predominant genotype in Taiwan, which was previously thought to be less associated with severe disease outcomes, an HDV-2 cDNA clone was isolated from HCC for study. It demonstrated a replication level reaching up to 74% of that observed for a widely used HDV-1 strain in transfected cultured cells. Surprisingly, both forms of HDV-2 HDAg promoted cell migration and invasion, affecting the rearrangement of actin cytoskeleton and the expression of epithelial-mesenchymal transition markers. In summary, this study underscores the prevalence of HDV-2, HDV-4, and their mixed infections in HCC, highlighting the genetic diversity in HCC as well as the potential role of both forms of the HDAg in HCC oncogenesis.


Assuntos
Carcinoma Hepatocelular , Variação Genética , Genótipo , Vírus Delta da Hepatite , Neoplasias Hepáticas , Carcinoma Hepatocelular/virologia , Vírus Delta da Hepatite/genética , Humanos , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Carcinogênese/genética , Feminino , Taiwan , Evolução Molecular , Replicação Viral , Filogenia , RNA Viral/genética , Hepatite D/virologia , Idoso , Vírus da Hepatite B/genética
6.
Front Oncol ; 14: 1403052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912065

RESUMO

Introduction: Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods: The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results: ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion: This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.

7.
Discov Oncol ; 15(1): 145, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713320

RESUMO

BACKGROUND: C-X-C motif chemokine ligand 1 (CXCL1) and epithelial growth factor (EGF) are highly secreted by oral squamous cell carcinoma (OSCC) cells and tumor-associated macrophages, respectively. Recent studies have shown that there is intricate "cross-talk" between OSCC cells and macrophages. However, the underlying mechanisms are still poorly elucidated. METHODS: The expression of CXCL1 was detected by immunohistochemistry in OSCC clinical samples. CXCL1 levels were evaluated by RT‒PCR and ELISA in an OSCC cell line and a normal epithelial cell line. The expression of EGF was determined by RT‒PCR and ELISA. The effect of EGF on the proliferation of OSCC cells was evaluated by CCK-8 and colony formation assays. The effect of EGF on the migration and invasion ability and epithelial-mesenchymal transition (EMT) of OSCC cells was determined by wound healing, Transwell, RT‒PCR, Western blot and immunofluorescence assays. The polarization of macrophages was evaluated by RT‒PCR and flow cytometry. Western blotting was used to study the molecular mechanism in OSCC. RESULTS: The expression of C-X-C motif chemokine ligand 1 (CXCL1) was higher in the OSCC cell line (Cal27) than in immortalized human keratinocytes (Hacat cells). CXCL1 derived from Cal27 cells upregulates the expression of epithelial growth factor (EGF) in macrophages. Paracrine stimulation mediated by EGF further facilitates the epithelial-mesenchymal transition (EMT) of Cal27 cells and initiates the upregulation of CXCL1 in a positive feedback-manner. Mechanistically, EGF signaling-induced OSCC cell invasion and migration can be ascribed to the activation of NF-κB signaling mediated by the epithelial growth factor receptor (EGFR), as determined by western blotting. CONCLUSIONS: OSCC cell-derived CXCL1 can stimulate the M2 polarization of macrophages and the secretion of EGF. Moreover, EGF significantly activates NF-κB signaling and promotes the migration and invasion of OSCC cells in a paracrine manner. A positive feedback loop between OSCC cells and macrophages was formed, contributing to the promotion of OSCC progression.

8.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 997-1010, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818582

RESUMO

Systemic therapies, the ultimate strategies for patients with advanced hepatocellular carcinoma (HCC), are suffering from serious clinical challenges, such as the occurrence and development of drug resistance. Treatment resistance aggravates tumor progression partly by inducing tumor metastasis. Regorafenib-resistant HCC cells exhibit a highly striking metastatic phenotype, but the detailed mechanisms underlying these aggressive behaviors remain elusive. Here, we conduct transcriptome sequencing analysis to identify COL5A2 as a crucial driver of the metastatic characteristics of regorafenib-resistant HCC cells. COL5A2 is aberrantly highly expressed in resistant cells, and its genetic depletion significantly suppresses proliferation, migration, invasion, vasculogenic mimicry (VM) formation and lung metastasis in vitro and in vivo, concomitant with the downregulation of VE-cadherin, EphA2, Twist1, p-p38 and p-STAT3 expressions. LIFR is confirmed to be an essential downstream molecule of COL5A2, and its expression is observably elevated by COL5A2 depletion. Ectopic overexpression of LIFR drastically attenuates the proliferation, migration, invasion and VM of regorafenib-resistant cells and represses the expressions of VM-related molecules and the activation of p38/STAT3 signaling pathway. Interestingly, rescue experiments show that the inhibition of the above aggressive features of resistant cells by COL5A2 loss is clearly alleviated by silencing of LIFR. Collectively, our results reveal that COL5A2 promotes the ability of regorafenib-resistant HCC cells to acquire a metastatic phenotype by attenuating LIFR expression and suggest that therapeutic regimens targeting the COL5A2/LIFR axis may be beneficial for HCC patients with therapeutic resistance.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Piridinas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Piridinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Camundongos , Camundongos Nus , Fenótipo , Metástase Neoplásica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Subunidade alfa de Receptor de Fator Inibidor de Leucemia
9.
Genes Genomics ; 46(6): 689-699, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38691326

RESUMO

BACKGROUND: Ovarian cancer (OC) is the second most commonly seen cancer in the US, and patients with OC are commonly diagnosed in the advanced stage. Research into the molecular mechanisms and potential therapeutic targets of OC is becoming increasingly urgent. In our study, we worked to discover the role of TRIM44 in OC development. OBJECTIVE: This study explored whether the overexpression of TRIM44 mediates the NF-kB pathway to promote the progression of OC. METHODS: A TRIM44 overexpression model was constructed in SKOV3 cells, and the proliferation ability of the cells was detected using the CCK-8 assay. The migration healing ability of cells was detected using cell scratch assay. Cell migration and invasion were detected using Transwell nesting. TUNEL was applied to detect apoptosis, and ELISA and western blot were used to detect the expression of NF-κB signaling pathway proteins. The pathological changes of the tumor tissues were observed using HE staining in a mouse ovarian cancer xenograft model. Immunofluorescence double staining, RT-PCR, and western blot were used to determine the expression of relevant factors in tumour tissues. RESULTS: TRIM44 overexpression promoted the proliferation, migration, and invasion of SKOV3 cells in vitro and inhibited apoptosis while enhancing the growth of tumours in vivo. TRIM44 regulated the NF-κB signaling pathway. CONCLUSIONS: TRIM44 overexpression can regulate the NF-κB signaling pathway to promote the progression of OC, and TRIM44 may be a potential therapeutic target for OC.


Assuntos
Movimento Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B , Neoplasias Ovarianas , Transdução de Sinais , Proteínas com Motivo Tripartido , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais/genética , Proliferação de Células/genética , Movimento Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Progressão da Doença
11.
Curr Pharm Des ; 30(19): 1519-1529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716546

RESUMO

BACKGROUND: To investigate the effect of raltitrexed + X-ray irradiation on esophageal cancer ECA109 cells and analyze the potential action mechanism. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the inhibitory effect of raltitrexed on cell proliferation. The effect of raltitrexed on radiosensitivity was studied through a clone-forming experiment. The scratch assay and invasion test were performed to understand the cell migration and invasion abilities. The apoptosis rate change was measured using a flow cytometer, and Western Blotting was used to determine the expression of B cell lymphoma-2 (Bcl-2) and Bcl2-associated X protein (Bax) in each group. RESULTS: Raltitrexed significantly inhibited ECA109 proliferation in a time-dose-dependent manner; there were significant differences among different concentrations and times of action. The results of the clone-forming experiment showed a sensitization enhancement ratio of 1.65, and this demonstrated a radiosensitization effect. After the combination of raltitrexed with X-ray, the cell migration distance was shortened, and the number of cells penetrating the membrane was reduced. CONCLUSION: Raltitrexed can inhibit the growth of esophageal cancer ECA109 cells and has a radiosensitization effect.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Esofágicas , Quinazolinas , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Quinazolinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Tiofenos/farmacologia , Tioxantenos/farmacologia , Tioxantenos/química , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células Tumorais Cultivadas , Movimento Celular/efeitos dos fármacos
12.
Oncol Res ; 32(4): 625-641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560562

RESUMO

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilação , Neoplasias Pulmonares/patologia , Acetilação , Camundongos Nus , Transcrição Gênica , Movimento Celular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
13.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611058

RESUMO

Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.

14.
Aging (Albany NY) ; 16(8): 6757-6772, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656882

RESUMO

USP15, a pivotal member of the deubiquitinase family, plays a crucial role in orchestrating numerous vital biological processes, including the regulation of NF-κB signaling pathway and deubiquitination of proto-oncogenes. In various cancers, USP15 has been validated to exhibit up-regulated expression, impacting the initiation and progression of cancer. However, its precise mechanism in bladder cancer remains elusive. Our study shed light on the significant overexpression of USP15 in bladder cancer cells compared to normal bladder cells, correlating with a poorer prognosis for bladder cancer patients. Strikingly, attenuation of USP15 expression greatly attenuated the proliferation, migration, and invasion of bladder cancer cells. Moreover, upregulation of USP15 was found to drive cancer progression through the activation of the NF-κB signaling pathway. Notably, USP15 directly deubiquitinates BRCC3, heightening its expression level, and subsequent overexpression of BRCC3 counteracted the antitumoral efficacy of USP15 downregulation. Overall, our findings elucidated the carcinogenic effects of USP15 in bladder cancer, primarily mediated by the excessive activation of the NF-κB signaling pathway, thereby promoting tumor development. These results underscore the potential of USP15 as a promising therapeutic target for bladder cancer in the future.


Assuntos
NF-kappa B , Transdução de Sinais , Proteases Específicas de Ubiquitina , Neoplasias da Bexiga Urinária , Animais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
15.
Sci Rep ; 14(1): 7540, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553479

RESUMO

Medulloblastoma (MB) is a malignant brain tumour that is highly common in children and has a tendency to spread to the brain and spinal cord. MB is thought to be a metabolically driven brain tumour. Understanding tumour cell metabolic patterns and characteristics can provide a promising foundation for understanding MB pathogenesis and developing treatments. Here, by analysing RNA-seq data of MB samples from the Gene Expression Omnibus (GEO) database, 12 differentially expressed metabolic-related genes (DE-MRGs) were chosen for the construction of a predictive risk score model for MB. This model demonstrated outstanding accuracy in predicting the outcomes of MB patients and served as a standalone predictor. An evaluation of functional enrichment revealed that the risk score showed enrichment in pathways related to cancer promotion and the immune response. In addition, a high risk score was an independent poor prognostic factor for MB in patients with different ages, sexes, metastasis stages and subgroups (SHH and Group 4). Consistently, the metabolic enzyme ornithine decarboxylase (ODC1) was upregulated in MB patients with poor survival time. Inhibition of ODC1 in primary and metastatic MB cell lines decreased cell proliferation, migration and invasion but increased immune infiltration. This study could aid in identifying metabolic targets for MB as well as optimizing risk stratification systems and individual treatment plans for MB patients via the use of a metabolism-related gene prognostic risk score signature.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/patologia , Proliferação de Células , Prognóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
16.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456491

RESUMO

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Assuntos
Cobalto , Fator de Transcrição Associado à Microftalmia , Neoplasias , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Sumoilação , Linhagem Celular Tumoral , Poliploidia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Movimento Celular , Proliferação de Células
17.
BMC Gastroenterol ; 24(1): 106, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486162

RESUMO

To investigate the effect of Oncometabolite succinate on colorectal cancer migration and invasion and to initially explore the underlying mechanism.Succinate acid detection kit detected the succinate content in tissues. The growth of colorectal cancer cells was measured by cck-8 assay, wound-healing migration assay and transwell migration and invasion assays, and then explored the level of epithelial-mesenchymal transition (EMT) and STAT3/ p-STAT3 expression by western blot analysis and quantitative real-time PCR for mRNA expression. We found that succinate levels were significantly higher in carcinoma tissues than paracancerous tissues. After succinate treatment, the colorectal cancer cell lines SW480 and HCT116 had enhanced migration and invasion, the expression of biomarkers of EMT was promoted, and significantly increased phosphorylation of STAT3. In vivo experiments also showed that succinate can increase p-STAT3 expression, promote the EMT process, and promote the distant metastasis of colorectal cancer in mice.Succinate promotes EMT through the activation of the transcription factor STAT3, thus promoting the migration and invasion of colorectal cancer.


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Ácido Succínico , Fosforilação
18.
J Pers Med ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540995

RESUMO

Rare gene variants have been found to play a role in complex disorders. Preeclampsia, and especially early-onset preeclampsia, has a strong genetic link. However, the role of rare variants in the offspring of mothers with preeclampsia remains unclear. In this study, whole-exome sequencing (WES) was used to identify rare pathogenic variants in two families with early-onset preeclampsia. Two heterozygous rare variants in CCDC7, c.625C>T (p.R209C) and c.1015C>T (p.R339X), were detected in two families and were cosegregated in the offspring of preeclamptic pregnancies. We examined the spatiotemporal expression pattern of CCDC7 in human placental villi and the effects of CCDC7 on migration and invasion of trophoblast cells JEG-3. The quantitative real-time PCR and Western blot results showed that the expression of CCDC7 in placental villi was the lowest during the first trimester and increased as the pregnancy progressed. The CCDC7 p.R339X variant showed a decrease in mRNA and protein expressions. Loss-of-function assays showed that knockdown of CCDC7 suppressed the migration and invasion of JEG-3 cells. In conclusion, CCDC7 is a potential susceptibility gene for preeclampsia, which is key for the migration and invasion of trophoblast cells. Rare variants of preeclampsia in offspring may play a crucial role in the pathogenesis of preeclampsia and require further research.

19.
Int J Clin Exp Pathol ; 17(2): 29-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455506

RESUMO

OBJECTIVES: Prostate cancer holds the second-highest incidence rate among all male malignancies, with a noticeable scarcity of effective treatment approaches. The REST Corepressor 1 (RCOR1) protein exhibits elevated expression across various tumors, acting as an oncogene. Nevertheless, its functions and mechanisms in prostate cancer have yet to be documented. While miR-23 demonstrates reduced expression in prostate cancer, the downstream genes it regulates remain unclear. METHODS: RT-qPCR and Western blotting assays were utilized to elucidate the mRNA and protein levels of miR-23b-3p and RCOR1. The luciferase reporter assay was employed to unveil the targeting relationship between miR-23b-3p and RCOR1. Additionally, a CCK-8 assay demonstrated cell growth, while colony formation and Transwell assays were performed to observe clone formation, cell migration, and invasion. RESULTS: In this study, we observed substantial mRNA and protein levels of RCOR1 in prostate cancer cells such as DU145, PC3, and LNCap. RCOR1 overexpression enhanced the growth, colony formation, migration, and invasion of prostate cancer cells, whereas genetic silencing of RCOR1 suppressed these processes. Bioinformatics analysis identified miR-23b-3p as a potential regulator of RCOR1, and luciferase assays validated RCOR1 as a downstream target of miR-23b-3p. Increasing miR-23b-3p mimics diminished RCOR1's mRNA and protein levels, while raising miR-23b-3p levels boosted RCOR1's expression. Moreover, the stimulatory impact of RCOR1 on prostate cancer cell development could be countered by elevating miR-23b-3p mimics. CONCLUSION: In summary, our findings confirm that RCOR1 is indeed under the influence of miR-23, shedding light on the miR-23/RCOR1 pathway's role in prostate cancer development. This offers novel theoretical and experimental support for comprehending the underlying mechanisms of prostate cancer and for targeted therapeutic avenues.

20.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...